Dengan semangat juang untuk maju, telah hadir buku ini kehadapan para pelanggan untuk memilikinya !
With a fighting spirit to go forward, this book has come into the presence of the customer to have it!
BOOK STUDY ON THE MARKET CONDITIONS AND PROSPECT OF STEAM TURBINE (POWER PLANT) INDUSTRY IN INDONESIA, 2013-2014
PRICE :
INDONESIA VERSION is Rp 7,000,000.00
ENGLISH VERSION is US$ 800.00
BAB I - PENDAHULUAN
BAB XIV - DAFTAR PERUSAHAAN JASA PENUNJANG MIGAS
BAB XV - KESIMPULAN DAN SARAN
DIREKTORI (PERUSAHAAN PEMBANGKIT LISTRIK DI INDONESIA)
Pelanggan yang kami
cintai! Salam sejahtera.
Semoga
kita semua ada dalam lindungan Tuhan!
Latar Belakang Commercial
Global Data Research (CDR)
Kami adalah
sebuah lembaga Konsultan, Survey, Riset dan Pelaporan di bidang data riset
secara global, menyajikan berbagai informasi bisnis aktual yang meliputi sektor
Industri manufaktur, pertambangan, perbankan, asuransi, studi kelayakan, dan
jasa riset lainnya.
Kami hadir
sebagai mitra konsultan Anda, untuk memberikan informasi aktual yang Anda
perlukan guna menentukan arah kebijakan dalam mengembangkan perusahaan Anda. Salah satu produk buku studi yang kami
tawarkan kepada Anda adalah “Buku Studi
tentang Kondisi Pasar dan Prospek Industri Turbin Uap (Pembangkit Listrik) di
Indonesia, 2013-2014.
Kami
tawarkan Buku tersebut kepada Anda seharga Rp.
7.000.000 (Tujuh juta rupiah) untuk Versi Bahasa Indonesia, dan US$ 800 untuk Versi Bahasa Inggris,
guna membantu para pelaku bisnis pada Industri Pembangkit Listrik baik domestik
maupun mancanegara, membantu para Investor, membantu pihak Perbankan atau
Kreditor, dan pihak lainnya yang terkait, dengan cara melihat peta kekuatan
diantara para pesaing/partner Anda, baik dengan pihak pemerintah, pesaing dari
luar negeri maupun dalam negeri, mempelajari perkembangan ekspor dan impor,
mengetahui hambatan dan peluang bagi perusahaan yang sedang menggeluti ataupun
yang akan terjun ke dunia usaha Pembangkit Listrik, mengetahui kapasitas
produksi, mengetahui pangsa pasar, mengetahui susunan Direktur dan Komisaris,
serta informasi lainnya yang perlu Anda ketahui. (terlampir contoh Profil Perusahaan).
Seberapa
besar kontribusi perusahaan Anda dalam meningkatkan dan menciptakan energi alternatif dalam memenuhi kebutuhan energi listrik seiring dengan perkembangan perekonomian di Indonesia saat ini dan yang akan datang seiring dengan lajunya pembangunan di segala sektor. Kemitraan pun telah dibuka lebar seluas-luasnya oleh pihak PLN bagi para Investor untuk berinvestasi pada Industri Pembangkit Listrik, terutama di wilayah yang belum tersentuh listrik. Nah..., dengan memiliki buku ini, Anda
akan menjadi tahu dan mengetahui setiap peluang dan hambatan pada bisnis ini. Selamat membaca...!!!
KATA PENGANTAR
Turbin uap merupakan suatu penggerak awal yang mengubah energi potensial uap menjadi energi kinetik, dan selanjutnya diubah menjadi energi mekanis dalam
bentuk putaran poros turbin. Poros turbin langsung atau dengan bantuan roda gigi reduksi, dihubungkan
dengan mekanisme yang akan digerakkan. Tergantung pada jenis mekanisme yang
digunakan, turbin uap dapat digunakan pada berbagai bidang, seperti pada bidang industri,
untuk pembangkit tenaga listrik dan untuk transportasi. Pada proses perubahan energi potensial menjadi
energi mekanisnya,
yaitu dalam bentuk putaran poros dilakukan dengan berbagai cara.
Pada dasarnya turbin uap terdiri dari dua bagian
utama, yaitu stator dan rotor yang merupakan komponen utama pada
turbin, kemudian ditambah komponen lainnya yang meliputi
pendukungnya seperti bantalan, kopling dan sistem bantu lainnya agar kerja turbin dapat
lebih baik. Sebuah turbin uap memanfaatkan energi kinetik dari fluida kerjanya
yang bertambah akibat penambahan energi termal.
Kebijakan Energi dalam
Penyediaan Tenaga Listrik
Dalam memenuhi kebutuhan tenaga listrik
nasional, pembangunan pembangkit tenaga listrik di Indonesia tidak hanya
semata-mata dilakukan oleh PT PLN (Perusahaan Listrik Negara) - Persero saja,
tetapi dilakukan pula oleh pihak lain yaitu swasta, koperasi, dan Badan Usaha
Milik Daerah (BUMD). Hal ini sesuai dengan Pasal 4 ayat (2) Undang-Undang Nomor
30 Tahun 2009 tentang Ketenagalistrikan, bahwa: ”Badan usaha swasta, koperasi, dan swadaya masyarakat dapat
berpartisipasi dalam usaha penyediaan tenaga listrik”.
Pengembangan kapasitas
penyediaan tenaga listrik diarahkan pada pertumbuhan yang realistis dan
diutamakan untuk menyelesaikan krisis penyediaan tenaga listrik yang terjadi di
beberapa daerah, meningkatkan cadangan dan terpenuhinya margin cadangan (Sistem Jawa-Madura-Bali 30% dan Sistem Luar
Jawa-Madura Bali 40%) dengan mengutamakan pemanfaatan sumber energi setempat
atau energi baru terbarukan serta mengurangi pengembangan pembangkit Bahan
Bakar Minyak (BBM).
Pengembangan pembangkit BBM, dikecualikan
untuk penanggulangan daerah krisis penyediaan tenaga listrik jangka pendek
(satu hingga dua tahun ke depan) sambil menunggu selesainya pembangunan
pembangkit non-BBM yang telah direncanakan, dengan melakukan sewa pembangkit
yang menggunakan bahan bakar MFO.
Apabila pembangkit non-BBM yang telah
direncanakan tersebut telah beroperasi, maka pembangkit BBM tersebut di
non-operasikan.
Mempertimbangkan tingginya pertumbuhan tenaga
listrik, memberikan akses listrik kepada seluruh masyarakat dan mendorong
pemanfaatan energi baru terbarukan, maka program percepatan pembangunan
pembangkit 10.000 MW tahap II yang komposisi energi primernya beragam (tidak
hanya batu bara) ditawarkan untuk dikembangkan oleh PT PLN (Persero) maupun
swasta dengan memberikan fasilitas sebagaimana yang telah dilaksanakan dalam
program percepatan pembangunan pembangkit 10.000 MW tahap I.
Pengembangan PLTU batu bara skala kecil dapat
dipertimbangkan sebagai salah satu alternatif untuk menggantikan pembangkit
listrik yang menggunakan bahan bakar minyak pada sistem skala kecil untuk
menekan biaya operasi sistem kelistrikan. Disamping itu, pengembangan
Pembangkit Listrik Tenaga Uap (PLTU) batu bara skala kecil ini dapat juga
dimanfaatkan untuk mengganti peranan sebagian Pembangkit Listrik Tenaga Disel
(PLTD) yang ada di sistem kelistrikan di Luar Jawa-Madura-Bali yang dominasinya
masih cukup tinggi.
Dengan mempertimbangkan sulitnya memperoleh
lahan untuk membangun pembangkit tenaga listrik skala besar di pulau Jawa dan
mempertimbangkan semakin meningkatnya beban puncak dari tahun ke tahun, maka
pengembangan PLTU batu bara dengan kapasitas 1.000 MW dengan teknologi supercritical boiler untuk memperoleh
efisiensi dan tingkat emisi yang lebih baik, dapat dikembangkan oleh PT PLN
(Persero) dan swasta.
Secara umum kebijakan energi nasional lebih bertumpu pada energi
yang berasal dari fosil, terutama bahan bakar minyak (BBM). Khusus tentang
penyediaan energi listrik dari kapasitas PLN yang terpasang, sebesar 72,85%
energi dihasilkan dari bahan bakar fosil yang terdiri: 28,58% berasal dari
pembangkit berbahan bakar gas, 25,28% dari minyak bumi, dan 18,99% berasal dari
batu bara. Sedangkan tenaga listrik yang dihasilkan oleh tenaga air sebesar
11,96%, dan yang dihasilkan oleh panas bumi sebesar 1,51%. Harga BBM
yang mencapai antara 60-70 US dollar per barel berdampak terhadap semakin
mahalnya biaya penyediaan tenaga listrik nasional. Hal ini dipersulit lagi
dengan kemampuan negara untuk menanggung subsidi semakin menurun, sehingga
Tarif Daya Listrik (TDL) selalu mengalami kenaikan secara signifikan. Keadaan
ini diperparah lagi dengan perilaku pengusaha yang mematikan generator
listriknya pada saat beban puncak. Masalah ini ditambah dengan semakin tuanya
pembangkit milik PLN yang berdampak terhadap terjadinya krisis tenaga listrik
pada saat beban puncak.
Pemadaman listrik secara bergilir akan berdampak terhadap
menurunnya produktivitas perekonomian. Ketiadaan tenaga listrik secara kontinyu
akan mematikan industri kecil dan menengah yang rata-rata tidak memiliki sumber
daya cadangan untuk menghadapi black out. Kebijakan hemat listrik
nasional di satu sisi akan mengurangi konsumsi listrik, tetapi di sisi yang
lain akan mengurangi kualitas kehidupan manusia. Tertundanya operasi medis,
macetnya jalan raya, pembatasan jam tayang TV dan siaran radio merupakan bukti
kongkret yang dialami masyarakat. Apakah ini merupakan opportunity cost
yang harus dibayar untuk menjamin kecukupan tenaga listrik nasional?
Tentunya dalam jangka panjang biaya yang harus dikeluarkan akan semakin besar.
Kebijakan hemat listrik seharusnya diimbangi dengan riset dan
pengembangan tentang penyediaan alat-alat elektronik yang hemat listrik di
pasaran. Dalam jangka panjang seiring dengan meningkatnya pertumbuhan ekonomi,
maka kebutuhan energi listrik nasional juga mengalami pertumbuhan yang cukup
pesat. PLN seharusnya memperbaiki kondisi pembangkitnya dan menambah jumlah
pembangkit untuk menjamin pasokan tenaga listrik nasional. Disamping itu untuk
menghindari gejolak harga energi dunia, maka perlu dilakukan diversifikasi
energi. Hal ini untuk mengurangi resiko dan menjamin kepastian penyediaan
energi listrik nasional. Pertanyaan yang menarik untuk diajukan, adalah:
Bagaimanakah diversifikasi energi yang harus dilakukan? dan Bagaimanakah
potensi penggunaan sumber energi alternatif untuk pembangkitan listrik?
DIVERSIFIKASI
ENERGI
Ahli energi, membagi energi menjadi 3 bagian, yaitu: energi fosil
(minyak bumi, batu bara, dan gas alam), energi nuklir, dan energi terbarukan.
Sifat dasar energi yang berasal dari fosil adalah tidak terbarukan, sehingga
ada kemungkinan sumber energi ini akan habis jika digunakan secara terus
menerus. Padahal proses pembentukan energi jenis ini diperlukan waktu yang
sangat panjang. Disamping itu energi yang berasal dari fosil akan menyebabkan
pencemaran air, udara, dan tanah yang luar biasa. Energi nuklir berasal dari
proses fisi inti radioaktif, yang dapat menimbulkan energi panas. Sedangkan
energi terbarukan biasanya berasal dari bahan nabati. Tujuan diversifikasi
energi untuk pembangkitan listrik diharapkan akan mengurangi ketergantungan
terhadap minyak bumi, menjamin kecukupan untuk pembangkit, bersifat sustainable,
dan mengurangi pencemaran lingkungan.
Langkah yang diambil oleh PLN untuk beralih dari penggunaan minyak
bumi ke batu bara dan gas merupakan kebijakan yang "bijaksana" pada
saat ini. PLN dalam jangka pendek akan mengganti 12 pembangkitnya dengan
menggunakan bahan bakar LPG (Liquid Petroleum Gas).
Secara kimiawi, LPG lebih baik jika dibandingkan dengan LNG,
karena LPG termasuk kategori hidrokarbon C3-C4 (Propana dan Butana),
sedangkan LNG C1-C2 (Methana).
Disamping itu, potensi LPG di Indonesia sangat besar yaitu sebesar 68,87
triliun kaki kubik yang terdiri atas cadangan non-associated gas sebesar
60 triliun dan cadangan associated gas sebesar 8,87 triliun kaki kubik.
Cadangan tersebut tersebar di seluruh wilayah Indonesia, dengan cadangan
terbesar berada di Pulau Natuna, Kalimantan Timur, dan Nangro Aceh Darussalam
(NAD). Selama ini LPG tersebut banyak digunakan sebagai komoditi ekspor, dan
kurang dimanfaatkan untuk sumber energi pada industri.
Dengan menggunakan LPG, maka PLN akan menikmati penghematan
sebesar Rp. 1.950,00 per liter jika dibandingkan dengan HSD (High
Solar Diesel). Penghematan ini berdasarkan perhitungan selisih harga antara
LPG dan HSD. Harga LPG impor sekitar US$ 380 per ton, sedangkan harga HSD
sebesar Rp. 4.800 per liter. Sedangkan harga dalam negeri LPG sekitar US$ 320
per ton dan HSD sebesar Rp 4.300. Beban biaya tambahan yang harus ditanggung
PLN antara lain penyediaan tempat penampungan LPG beserta segala
infrastrukturnya atau menanggung biaya sandar kapal jika menggunakan kapal
sebagai tempat penampungannya. Menggunakan kapal pengangkut sebagai penampungan
LPG membawa kemudahan untuk pendistribusiannya, sehingga keterlambatan stok
energi bagi pembangkit dapat dikurangi, tetapi disisi lain PLN akan menanggung
biaya sandar kapal sekitar US$ 10.000/hari.
Selain gas, bahan bakar fosil yang tersedia berlimpah di Indonesia
yaitu batu bara. Potensi cadangan batu bara di Indonesia sekitar 36,34 x 109
ton, yang sebagian besar tersebar di Sumatera dan Kalimantan. Dengan
menggunakan R/P ratio (rasio antara reserve dan production), maka
batu bara akan habis sekitar 500 tahun lagi, sedangkan BBM dan gas alam akan
habis 16 dan 34 tahun lagi. Fakta ini menunjukkan, bahwa batu bara merupakan
sumber energi fosil yang paling berlimpah di Indonesia. Pangsa batu bara
sebagai sumber energi primer saat ini hanya sekitar 9%, dari jumlah tersebut
yang digunakan untuk bahan bakar pembangkit listrik baru menghasilkan 18,99%
dari kapasitas terpasang milik PLN. Saat ini pemanfaatan batu bara masih
sebatas untuk kebutuhan rumah tangga dan sebagai komoditi ekspor. Disisi yang
lain penggunaan batu bara sebagai sumber energi akan menyebabkan pencemaran
lingkungan. Pemanfaatan gas methana yang berada pada lapisan batu bara
merupakan salah satu kebijakan yang patut dipertimbangkan. Hal ini karena
Indonesia mempunyai cadangan gas methana sebesar 1,4 kali jumlah yang ada
sekarang. Batu bara yang ada tidak perlu diangkat ke permukaan, tetapi dirubah
dengan menggunakan teknik pencairan di bawah tanah kemudian gasnya diambil.
Manfaatnya akan mengurangi biaya penambangan dan bersih lingkungan.
Dengan melakukan
diversifikasi energi dan tidak bertumpu pada BBM, maka keberlanjutan penyediaan
tenaga listrik mempunyai harapan yang cerah. Harus tetap pula disadari, bahwa
batu bara dan gas juga bersifat non renewable resources, sehingga dalam
jangka panjang perlu dilakukan penggunaan energi alternatif dan sebaiknya
dimasukan dalam kebijakan energi nasional. Subsidi dana penelitian dan
pengembangan serta kebijakan alih energi alternatif merupakan faktor penting
untuk suksesnya kebijakan energi nasional.
DAFTAR ISI
KATA PENGANTAR
DAFTAR ISI
DAFTAR TABEL
DAFTAR TABEL
DAFTAR GAMBAR
DAFTAR GRAFIK
BAB I - PENDAHULUAN
1.1. Latar Belakang
1.1.1. Pengelolaan sistem ketenagalistrikan di
Indonesia
1.1.1.1. Sistem Kelistrikan di Jawa-Bali
1.1.1.2. Sistem ketenagalistrikan di Sumatera sudah
terpadu
1.1.1.3. Sistem kelistrikan di Pulau lain
1.1.2. Kondisi Sistem Pembangkitan
1.1.2.1. Perkembangan pembangkit
1.1.3. Kondisi Sistem Transmisi
1.1.4. Realisasi pertumbuhan sektor tenaga listrik
1.2. Tujuan dan
Ruang Lingkup
1.3. Sumber Data
dan Informasi
BAB
II - PERTUMBUHAN PEREKONOMIAN DAN PENDUDUK
INDONESIA
2.1. Pertumbuhan Ekonomi Indonesia, Triwulan
IV-2012
2.1.1. Pertumbuhan Ekonomi, Tahun 2012
2.1.2. Pertumbuhan Ekonomi, Triwulan IV-2012
2.1.3. Struktur PDB menurut lapangan usaha, Tahun 2010-2012
2.1.4. PDB menurut Penggunaan
2.1.5. PDB dan Produk Nasional Bruto (PNB) Per Kapita
2.1.6. Profil Spasial Ekonomi Indonesia menurut Kelompok Provinsi,
Triwulan IV-2012
2.2. Pertumbuhan Ekonomi Indonesia Triwulan I-2013
tumbuh 6,3-6,8 Persen
2.3. Perkembangan indeks harga konsumen/inflasi
2.4. Ekonomi
Indonesia Triwulan II-2013 tumbuh 5,81 Persen
2.4.1. PDB Menurut Lapangan Usaha, Triwulan II-2013
2.4.2. PDB menurut Pengeluaran, Triwulan II-2013
2.4.3. Profil Spasial Ekonomi Indonesia menurut Kelompok Provinsi,
Triwulan II-2013
2.5. Penduduk Indonesia bisa mencapai lebih dari 257 Juta Jiwa, Tahun
2013
BAB
III - TEORI TENTANG TURBIN UAP (STEAM
TURBINE)
3.1. Mengenal
turbin uap
3.1.1. Definisi turbin uap
3.1.2. Komponen-komponen Turbin Uap
3.1.3. Cara
kerja Turbin Uap
3.1.4. Klasifikasi
Turbin Uap
3.1.5. Fungsi
Turbin Uap
3.2. Daftar Pembangkit Listrik di Indonesia
3.2.1. Pembangkit
Listrik Tenaga Air (PLTA)
3.2.2. Pembangkit
Listrik Tenaga Uap (PLTU)
3.2.3. Pembangkit
Listrik Tenaga Gas (PLTG)
3.2.4. Pembangkit
Listrik Tenaga Diesel (PLTD)
3.2.5. Pembangkit
Listrik Tenaga Nuklir
3.3. Lima energi alternatif yang cocok untuk Indonesia
3.3.1. Tenaga Turbin Angin (Windmill)
3.3.2. Tenaga Panas Bumi (Geothermal)
3.3.3. Tenaga Ombak (Wave)
3.3.4. Tenaga Air (Water)
3.3.5. Energi Sampah (Biomass)
3.4.
Kriteria Pemilihan Pembangkit
3.4.1. Karakteristik Beban
3.4.2. Keandalan Pembangkit
3.4.3.
Aspek Ekonomi
3.4.4.
Aspek Lingkungan
dan Geografis
3.4.5. Aspek Sosial dan Politik
3.5. Jenis-Jenis Pembangkit
3.5.1.
Pembangkit Listrik berbahan Bakar
Minyak
3.5.2. Pembangkit Listrik Berbahan Bakar Gas
3.5.3. Pembangkit Listrik Berbahan Bakar Batu
bara
3.5.4. Pembangkit Listrik Tenaga Nuklir
3.5.5.
Pembangkit Listrik Energi
Terbarukan
3.5.6. Tenaga Surya
3.5.7. Tenaga Angin
3.5.8. Biomassa
3.5.9. Tenaga Panas Bumi (Geothermal)
3.6. Mengenal Mikro
Turbin
3.6.1. Sepuluh unit mikro turbin bisa menyuplai listrik untuk Apartemen seluas 44.520 meter
3.6.2. Mikro turbin Biogas Kotoran Ternak Pedesaan
BAB
IV - KONDISI PASAR
4.1. PT
Siemens Industrial Power, pemain kunci Turbin Uap Nasional
4.2. Indonesia
merupakan pasar kuat untuk Industri Pembangkit Listrik
4.3. Investor
China kucurkan dana senilai US$ 20 Juta untuk membangun pabrik mesin turbin uap
4.4. Turbin Uap SST-140 berkapasitas
output 20 MW pertama di Indonesia
4.5. GE Oil & Gas & Triveny meluncurkan
Turbin Uap
4.8. PT.
Nusantara Turbin dan Propulsi (NTP) pelopor mesin uap pertama di Indonesia
4.9. PT. Krakatau
Daya Listrik (KDL) realisasikan 40 persen pada pembangunan pembangkit listrik
4.10. Pembangunan
Pembangkit Listrik di Papua
4.11. Proyek Listrik Tenaga Gas Rp 925 miliar dikerjakan WIKA
4.12. Turbin
Siemens digunakan pada PLTU Timika
4.13. WIKA menguasai lebih dari 30% proyek 10.000 MW Tahap I
4.14. PLTU Meulaboh beroperasi awal Maret 2013
4.15. Siemens
produksi turbin pembangkit listrik PLN
4.16. PLN mengurangi ketergantungan pada Komponen
Impor
4.17. Mesin Turbin Gas Aeroderivatif, terangi daerah
terpencil
4.18. PLN Jawa
Timur membuat terobosan dengan membangun PLTMH
4.19. Investor AS bangun Pembangkit Listrik Tenaga Angin di Yogyakarta
4.19.1. Pemanfaatan energi angin di Indonesia
4.19.2. Peta potensi angin
4.19.3. Menggerakkan pompa air
4.19.4. Jenis-jenis turbin angin
4.20. Korea
tertarik untuk membangun Hidro Power
di Indonesia
4.21. Cina
kembangkan Proyek Listrik di Indonesia
4.22. Menteri ESDM resmikan
beroperasinya 7 Proyek Kelistrikan di Sulawesi
4.23. PLN tandatangani kontrak pembangunan PLTU
Timika 4 x 7 MW
4.24. Batam, Tingkatkan Kapasitas
Listrik sebesar 80 MW gunakan Turbin Gas
4.25. Pengembangan energi laut di NTT
4.26. PLN sewa PLTU 2x30 MW di Bangka-Belitung (Babel)
4.27. Perusahaan Perancis mengembangkan Turbin Angin
penghasil Listrik sekaligus air bersih
4.28. Indonesia dan UPC Renewables Indonesia Limited menandatangani Nota Kesepahaman (MoU)
4.29. Tenaga Angin lepas pantai: Pasar baru Energi
Terbarukan
4.30. PLTMH Kalimaron, upaya memerdekakan warga
4.31. Gas gantikan BBM di PLTGU Tambak Lorok mulai
2013
4.32. Cina menggeser AS dalam pengembangan Energi
Angin
4.33. Wilayah perairan Indonesia simpan potensi
Energi Listrik dari arus laut
4.34. Pembangkit Listrik Tenaga arus laut bagi desa
pesisir tertinggal
4.35. Desa tertinggal di pulau-pulau kecil
4.36. Agenda dan kendala Kelistrikan Nasional
4.37. Listrik sebagai Infrastruktur Dasar
4.38. Potensi Energi Arus Laut bagi pulau-pulau
kecil
4.39. PLTA Peusangan siap penuhi kebutuhan Listrik
Gayo
4.40. Kualitas Uap PLTP Kamojang terbaik di
Indonesia
4.41. Listrik Mikro Hidro terangi Waterboom di
Klaten
4.42. Melihat
jaringan listrik di Amerika Serikat
4.43. Kebijakan
pengembangan Energi Aternatif di India
4.44. Pembangkit
Listrik Tenaga Mikro Hidro (PLTMH)
4.45. Tahun 2013, Produksi Batu bara dalam negeri
sebesar 20,30 persen
4.46. Turki mulai melirik Panas Bumi Indonesia
4.47. Bank Dunia dan Selandia Baru mendukung
Pertamina Geothermal Energy melakukan Ekspansi Energi Geothermal terbesar di
dunia
4.48. Tiga Pembangkit Listrik Tenaga Surya (PLTS)
resmi beroperasi
4.49. Menteri ESDM meresmikan PLTU Jeneponto (2 x
125 MW)
4.50. Daftar
Pembangkit Listrik Swasta dan Kapasitasnya
4.51. Daftar IPPs Indonesia (termasuk perusahaan yang tidak memasok daya listrik mereka ke PLN)
BAB V - PERKEMBANGAN SUMBER ENERGI DI INDONESIA
5.1. Batu
Bara
5.1.1. Produsen
dan Produksi Batu Bara
5.1.2. Peta lokasi penyebaran sumber daya dan cadangan batu bara
5.1.3. Pasokan Batu Bara
5.1.4. Produksi Briket
5.1.5. Harga Batu Bara
5.2. Gas Bumi
5.2.1. Cadangan Gas Bumi
5.2.2. Produksi Gas Bumi
5.2.3. Produksi dan Pemanfaatan Gas
Bumi
5.2.4. Perkembangan Ekspor Gas
5.2.5. Produksi dan Impor LPG
5.2.6. Produksi dan Ekspor LNG
5.3. Listrik
5.3.1. Rasio Elektrifikasi Nasional
5.3.2. Neraca Listrik Nasional
5.3.3. Kapasitas Pembangkit Listrik
PLN
5.3.4. Produksi Listrik per jenis
pembangkit
5.3.5. Penjualan Listrik per Sektor
5.4. Minyak Bumi
5.4.1. Cadangan Minyak Bumi
5.4.2. Produksi Minyak Bumi
5.4.3. Harga Minyak Bumi
5.4.4. Ekspor Minyak Bumi
5.4.5. Impor Minyak Bumi berdasarkan
Negara Asal
5.4.6. Produksi Bahan Bakar Minyak
(BBM)
5.4.6.1. Produksi
Kumulatif BBM
5.4.7. Produksi Non BBM
5.4.7.1. Produksi
Kumulatif Non BBM
5.4.8. Impor BBM
5.4.9. Konsumsi BBM dan Non BBM
berdasarkan jenis Energi
5.4.10. Hasil
Pengolahan Minyak (Refined Products)
5.5. Energi Terbarukan
5.5.1. Perkembangan Energi Terbarukan
5.5.2. Peta Potensi Panas Bumi di Indonesia
5.5.3. Kapasitas terpasang Panas Bumi per wilayah
5.5.4. Produksi Uap Tenaga Panas Bumi
5.5.5. Potensi Tenaga Air
5.5.6. Kapasitas Terpasang PLTA
5.5.7. Kapasitas Terpasang PLTMH
5.5.8. Kapasitas Terpasang PLT Biomassa
5.5.9. Kapasitas Terpasang PLTS/SHS
5.5.10. Kapasitas Terpasang PLT Bayu/Angin
5.6. Badan Usaha Pemegang Izin Usaha
5.6.1. Pengolahan Minyak Bumi
5.6.2. Pengolahan Hasil Olahan
5.6.3. Pengolahan Gas Bumi
5.7. Laporan Tahunan Produksi Minyak Bumi dan
Kondensat Indonesia
5.8. Total Produksi LPG
5.9. Produksi dan Pemanfaatan Gas Bumi
5.10. Produksi LPG
5.11. Produksi LNG
BAB VI - KINERJA PT. PLN (Persero)
6.1. Neraca
Daya (MW)
6.2. Neraca
Energi
6.3. Faktor
Beban, Faktor Kapasitas, Faktor Permintaan
6.4. Jumlah
pelanggaran per jenis pelanggan
6.5. Daya
tersambung per kelompok pelanggan (MVA)
6.6. Energi
terjual per kelompok pelanggan (GWh)
6.7. Pendapatan
per kelompok pelanggan (Juta Rp)
6.8. Energi
terjual rata-rata per jenis pelanggan (kWh)
6.9. Harga
jual listrik rata-rata per kelompok pelanggan (Rp/kWh)
6.10. Jumlah
pelanggan per jenis tegangan
6.11. Daya
tersambung
6.12. Energi
terjual per jenis tegangan (GWh)
6.13. Rasio
Elektrifikasi Nasional
6.14. Neraca
Listrik Nasional
6.15. Kapasitas
Pembangkit Listrik PLN per jenis Pembangkit
6.16. Produksi
Listrik per jenis Pembangkit
6.17. Penjualan
Listrik per sektor
6.18. Pendapatan
per jenis tegangan (Juta Rp)
6.19. Jumlah
pelanggan, daya tersambung dan Energi yang dikonsumsi per Golongan Tarif
6.20. Rasio
Elektrifikasi dan Energi yang dikonsumsi per kapita
6.21. Jumlah
Unit Pembangkit
6.22. Kapasitas
terpasang (MW)
6.23. Daya
mampu
6.24. Energi
yang diproduksi (GWh)
6.25. Pemakaian
bahan bakar
6.26. Harga
satuan bahan bakar
6.27. Energi
yang diproduksi per jenis bahan bakar (GWh)
6.28. Captive
Power (CP)
6.29. Panjang
jaringan transmisi (kms)
6.30. Panjang
jaringan tegangan menengah dan tegangan rendah (kms)
6.31. Jumlah
dan daya terpasang trafo gardu induk
6.32. Jumlah
dan daya terpasang trafo gardu distribusi
6.33. Biaya
operasi pembangkit per jenis
6.34. Biaya
operasi pembangkit rata-rata per kWh
6.35. Energi
terjual per kelompok pelanggan
6.36. Pendapatan
PLN
6.37. Kapasitas
terpasang
6.38. Faktor
beban, faktor kapasitas dan faktor permintaan (%)
6.39. Daya
tersambung per kelompok pelanggan (MVA)
6.40. Energi
terjual rata-rata per kelompok pelanggan (kWh)
BAB
VII - GAMBARAN UMUM PASOKAN KEBUTUHAN GAS
INDONESIA
7.1. Permasalahan Gas Bumi (Nasional, Regional,
Global)
7.2. Dasar penetapan neraca Gas Indonesia
7.3. Peta neraca Gas Indonesia
7.4. Neraca gas 11 region
7.5. Pasokan kebutuhan Gas Bumi berdasarkan Region
BAB
VIII - PERKEMBANGAN EKSPOR-IMPOR BARANG DAN
BAHAN UNTUK PEMBUATAN TURBIN UAP
8.1. Impor
8.1.1. Impor
bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Komoditi (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013
8.1.2. Impor
bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Bulan (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013
8.1.3. Impor
bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Pelabuhan (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013
8.1.4. Impor
bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Negara (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013
8.1.5. Impor
barang dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut komoditi (HS Kode 8404.20.00.00 - 8437.80.10.00), 2013
8.1.6. Impor
barang dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut bulan (HS Kode 8404.20.00.00 - 8437.80.10.00), 2013
8.1.7. Impor
thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut bulan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013
8.1.8. Impor
thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut negara (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013
8.1.9. Impor
thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut pelabuhan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013
8.1.10.Impor thermometer dan pendukungnya
untuk pembuatan Turbin Uap (Steam
Turbine) menurut bulan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013
8.2. Ekspor
8.2.1. Ekspor
bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Komoditi (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013
8.2.2. Ekspor
bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Negara (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013
8.2.3. Ekspor
bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Pelabuhan (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013
8.2.3. Ekspor
bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Bulan (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013
8.2.4. Ekspor
thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Komoditi (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013
8.2.5. Ekspor
thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Negara (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013
8.2.6. Ekspor
thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Pelabuhan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013
8.2.7. Ekspor
thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Bulan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013
BAB
IX - DAFTAR PROYEK PEMBANGKIT
TENAGA LISTRIK
BAB
X - PENGGUNAAN ENERGI DI BEBERAPA SEKTOR
10.1. Pulp dan Kertas
10.1.1. Mengurangi
biaya oportunitas
10.1.2. Tahapan
Pengembangan Teknologi
10.1.2.1. Teknologi
energi untuk sektor Industri
10.1.3. Penggunaan
energi di industri Pulp dan Kertas
10.2. Gula
10.3. Baja
10.3.1.
Industri baja konsumsi Energi dan Gas
sebesar 18 %
10.4. IPP Biomassa
10.5. Tekstil
10.6. Karbon Hitam
10.7. Limbah
Kota Padat
10.8. Makanan
10.9. Pemanasan Distrik
10.10. Penyulingan
10.11. Bahan
Kimia
10.12. Minyak dan Gas
10.13. Minyak Kelapa Sawit
10.14. IPP yang dipasang di Kapal
BAB
XI - PELUANG INVESTASI DAN
PENDUKUNGNYA
11.1. Minyak
dan Gas Bumi (Migas)
11.1.1. Kondisi
Migas Indonesia
11.1.2. Potensi
Sumber Daya Migas
11.1.3. Lokasi
dan status tiap cekungan Sedimen Indonesia
11.1.4. Potensi
Sumber Daya Coal Bed Methane (CBM)
11.1.5. Cadangan
Minyak dan Gas Bumi
11.1.6. Aktivitas
Eksplorasi
11.1.7. Produksi
minyak dan gas bumi
11.1.8. Kondisi
pasar minyak bumi
11.1.9. Sistem
penyediaan bahan bakar
11.1.10. Kondisi
pasar Gas Bumi
11.1.11. Infrastruktur
Migas
11.1.12. Infrastruktur
kilang minyak
11.1.13. Infrastruktur
gas bumi
11.1.14. Peluang
Investasi Migas
11.1.15. Peluang
Investasi usaha penunjang Migas
11.1.16. Prosedur
dan tata cara Investasi Migas
11.2. Peluang
Investasi Sub Sektor Ketenagalistrikan
11.2.1. Tinjauan
Kondisi Tenaga Listrik Nasional
12.2.1.1. Ketersediaan
sumber daya energy
12.2.1.2. Kondisi
Infrastruktur Ketenagalistrikan saat ini
12.2.1.3. Rasio
Elektrifikasi
11.2.2. Peluang
Investasi Ketenagalistrikan
11.2.2.1. Kondisi
permintaan dan penyediaan tenaga listrik
11.2.2.2. Prioritas
pengembangan infrastruktur Ketenagalistrikan ke depan
12.2.2.3. Potensi
proyek di sub sektor ketenagalistrikan
12.2.2.5. Prosedur
dan Tata Cara Investasi
12.2.2.6. Kewenangan
dan Pemberian Izin Usaha Ketenagalistrikan
12.2.2.7. Mekanisme
permohonan izin
12.2.2.8. Rekapitulasi
kebutuhan Infrastruktur dan Investasi
11.3. Peluang
Investasi sub sektor Pertambangan Mineral dan Batu Bara
11.3.1. Landasan
Hukum
11.3.2. Tinjauan
Kondisi Mineral dan Batu Bara
11.3.2.1. Potensi
Sumber Daya Mineral dan Batu Bara
11.3.2.2. Kondisi
Industri Mineral
11.3.2.3. Kondisi
Industri Batu Bara
11.3.3. Kondisi
Angkutan Batu Bara
11.3.3.1. Pelabuhan
muat batu bara
11.3.3.2. Niaga
11.3.4. Peluang
dan Tantangan Investasi Mineral dan Batu Bara
11.3.4.1. Kondisi
Produksi dan Penjualan Mineral dan Batu Bara
11.3.5. Prioritas
Pembangunan Infrastruktur Mineral dan Batu Bara ke depan
11.3.5.1. Pengolahan dan Pemurnian Mineral
11.3.5.2. Pengolahan dan Pemurnian Timah
11.3.5.3. Pengolahan dan Pemurnian Bauksit
11.3.5.4. Prioritas
Pembangunan Infrastruktur Mineral dan Batu Bara ke depan
11.3.6. Peluang
dan Tantangan Investasi di sub sektor Mineral dan Batu Bara
11.3.6.1. Peluang Investasi di Sub Sektor Mineral dan
Batu Bara
11.3.6.2. Tantangan Investasi di Sub Sektor Mineral dan
Batu Bara
11.3.6.3. Prosedur
dan Tata Cara Investasi
11.3.6.4. Persyaratan Permohonan IUP/IUPK Eksplorasi
11.3.7. Kewenangan
dan Pemberian Izin Usaha Pertambangan Mineral dan Batu Bara
11.4. Peluang
Investasi sub sektor Energi Baru, Terbarukan dan Konservasi Energi
11.4.1. Landasan
Hukum
11.4.2. Tinjauan
Kondisi Energi Baru, Terbarukan dan Konservasi Energi
11.4.2.1. Potensi
Energi Baru
11.4.2.3. Potensi
Energi Terbarukan
11.4.3. Potensi
Konservasi Energi
11.4.4. Struktur
Industri Energi Baru Terbarukan dan Efisiensi Pemanfaatan Energi
11.4.5. Inisiatif
Energi Bersih
11.4.6. Peluang
dan Tantangan Investasi Energi Baru, Terbarukan dan Konservasi Energi
11.4.6.1. Peluang
Investasi Energi Baru
11.4.6.2. Peluang Investasi Energi Nuklir
11.4.6.3. Peluang Investasi Hidrogen
11.4.7. Peluang
Investasi Energi Terbarukan
11.4.7.1. Panas Bumi
11.4.7.2. Aliran dan Terjunan Air
11.4.7.3. Bioenergi
11.4.7.4. Energi Sinar Matahari
11.4.7.5. Energi Angin
11.4.8. Peluang
Investasi Konservasi Energi
11.4.9. Tantangan
Investasi Energi Baru, Terbarukan dan Konservasi Energi
11.4.9.1. Tantangan Investasi Energi Baru
11.4.9.2. Tantangan Investasi Batu bara Tergaskan
11.4.9.3. Tantangan Investasi Nuklir
11.4.9.4. Tantangan Investasi Hidrogen
11.4.10. Tantangan Investasi Energi Terbarukan
11.4.10.1. Tantangan Investasi Panas Bumi
11.4.10.2. Aliran dan Terjunan Air
11.4.10.3. Bioenergi
11.4.10.4. Sinar Matahari
11.4.10.5. Angin
11.4.10.6. Tantangan Investasi Gerakan dan Perbedaan Suhu
Lapisan Air Laut
11.4.10.7. Tantangan Investasi Konservasi Energi
11.4.11. Program
Pengembangan Energi Baru, Terbarukan dan Konservasi Energi
11.4.11.1. Program
Pengembangan Energi Baru
11.4.11.2. Program
Pengembangan Energi Terbarukan
11.4.11.3. Bioenergi
11.4.11.4. Energi Gerakan dan Perbedaan Suhu Lapisan Laut
(Samudera)
11.4.12. Program Konservasi Energi
11.4.12.1. Sektor Industri
11.4.12.2. Sektor Komersial
11.4.12.3. Sektor
Transportasi
11.4.12.4. Sektor Rumah Tangga
11.5. Prosedur
dan Tata Cara Investasi
11.5.1. Prosedur
dan Tata Cara Investasi Izin Usaha Panas Bumi
11.5.2. Prosedur
dan Tata Cara Izin Usaha Niaga Bahan Bakar Nabati
11.5.3. Prosedur
dan Tata Cara Izin Usaha Aneka Energi Terbarukan (Energi yang menghasilkan
listrik)
11.5.4. Permasalahan
yang sering dipertanyakan dan penyelesaiannya dalam berinvestasi
11.5.4.1. Sub
Sektor Minyak dan Gas (Migas)
11.5.4.2. Sub
Sektor Mineral dan Batu Bara
11.5.4.3. Sub
Sektor Ketenagalistrikan
11.5.4.4. Sub
Sektor Energi Baru, Terbarukan dan Konservasi Energi (EBTKE)
11.5.5. Enclosure
Permasalahan Investasi sektor Energi Sumber Daya Mineral (ESDM)
11.5.5.1. Sub
Sektor Minyak dan Gas (Migas)
11.5.5.2. Sub
Sektor Ketenagalistrikan
11.5.5.3. Sub
Sektor Mineral dan Batu Bara
11.5.5.4. Sub
Sektor Energi Baru, Terbarukan dan Konservasi Energi (EBTKE)
BAB
XII - CSR BIDANG LINGKUNGAN PADA PEMBANGKIT
LISTRIK
12.1. Latar Belakang CSR
12.2. Maksud
dan Tujun CSR
12.3. Manfaat
CSR
12.4. Potret CSR di Indonesia
12.5. Perlunya
CSR Bidang Lingkungan yang Sistematis dan Terintegrasi
12.6. CSR pada Konservasi Energi dan Sumber Daya Alam
(SDA)
12.7. CSR pada Energi Terbarukan (Renewable
Energy)
12.8. Pelibatan Pemangku Kepentingan (stakeholder
engagement)
12.9. Penerapan CSR bidang lingkungan oleh PT ADARO
INDONESIA (Pembangkit
Listrik Tenaga Surya)
12.10. Penerapan CSR Bidang Lingkungan - Pendidikan
Lingkungan Hidup oleh PT Indonesia Power (Sekolah Lapangan Konservasi)
BAB XIII - STANDAR
NASIONAL INDONESIA (SNI)
BAB XIV - DAFTAR PERUSAHAAN JASA PENUNJANG MIGAS
14.1. Bidang Usaha Jasa Konstruksi
14.2. Bidang Usaha Jasa Non Konstruksi
14.3. Bidang Usaha Industri Penunjang
14.4. Daftar Perusahaan - Kontraktor Kontrak Kerjasama
14.4.1. Daftar Oil Company (Hulu)
14.4.2. Daftar Oil Company (Hilir)
14.4.3. Pertamina EP
14.4.4. Unit Bisnis Pertamina
14.5. Badan Usaha Bidang Hilir
14.5.1. Daftar Perusahaan Pemegang Izin Usaha Pengolahan Minyak
Bumi, Gas Bumi, dan Hasil Olahan
14.5.2. Daftar Perusahaan Pemegang Izin Usaha Pengangkutan Bahan
Bakar Minyak
14.5.3. Daftar Perusahaan Pemegang Izin Usaha Penyimpanan Bahan
Bakar Minyak
14.5.4. Daftar Perusahaan Pemegang Izin Usaha Penyimpanan LPG
14.5.5. Daftar Perusahaan Pemegang Izin Usaha Niaga Bahan Bakar
Nabati (Biofuel)
14.5.6. Daftar Perusahaan Pemilik NPT
14.6. Bidang Jasa Teknik
14.6.1. Daftar Perusahaan Pemboran
14.6.2. Daftar Perusahaan Jasa Inspeksi Teknik
14.6.3. Daftar Perusahaan Keagenan Alat Ukur Migas
14.6.4. Konsultan Lingkungan dan Laboratorium
14.6.5. Daftar Perusahaan Seismik
14.6.6.
Daftar Perakit Perekayasa Sistem Meter Minyak dan Gas BumiBAB XV - KESIMPULAN DAN SARAN
DIREKTORI (PERUSAHAAN PEMBANGKIT LISTRIK DI INDONESIA)
=========================================
Sample of Company Profile
Contact :
The focus and strength of the company lie with its continuing and innovating experience in serving the rapid national development of the most important support sectors, namely energy transportation, and communication. The challenging enormous demand for the infra-structure, strives the company to keep its attention to the ongoing innovation competing world-wide.
This is a company with breakthroughs of utilizing the maximum use of its productive personnel and continuous efficiency improvement to the attainable level of innovation.
The company is opened to all opportunities that promote efficiency in such a spread-wise area of activities. Though delivery as the final stage of operation is executed in an efficient and economical manner, the company keeps its improving process, even it has to invite and or to cooperate with expertises.
This is a company which implements the objective function of the good corporate governance. Governing the internal audit implementation to meet the objectives of good cooperate governance is totally inseparable.
Power Generation Division is currently engaged in Engineering, Procurement and Construction, Power Rental, IPP Development, Reduce Fuel Cost, Optimization, O&M and Supply part. Armed with the experience of existing as well as adequate human resources, as well as business development in the field of power generation, Power Generation Division forward strategies include:
Our customers love! Peace.
May we all exist in the shadow of the Lord!
Background of Commercial Global Data Research (CDR)
We are an agency consultant, Survey, Research and Reporting in the areas of global research data, presenting a variety of real-time business information that includes the manufacturing industry sector, mining, banking, insurance, feasibility studies, and other research services.
We present as your consultant partner, to provide real-time information that you need in order to determine the direction of policy in developing your company. One study book products that we offer to you is "Book Study of Market Conditions and Prospects of Industrial Steam Turbines (Power Plant) in Indonesia, 2013-2014.
We offer these books to you for Rp. 7,000,000 (seven million rupiahs) for the Indonesian version, and U.S. $ 800 for the English version, in order to help the business person on the Power Industry both domestic and foreign, to help the investors, help the banks or creditors, and other parties related, by looking at the map of power among its competitors / your partner, both with the government, competition from abroad and within the country, studying the development of export and import, know the obstacles and opportunities for companies who are or who will wrestle in enterprise Plant electricity, the production capacity of knowing, knowing the market, knowing the Board of Directors and Commissioners, as well as the other information you need to know. (Company Profile attached example).
How big are your company's contribution in improving and creating alternative energy in meeting the needs of electrical energy along with the economic development in Indonesia today and that will come along at the pace of development in all sectors. The Partnership also has opened the widest width by PLN for the investors to invest in the Power Industry, especially in areas that have not been touched by electricity. Well ..., to have this book, you will come to know and to know that every opportunity and constraints in this business. Happy reading ...!
INTRODUCTION
Steam turbine is an early mover that converts potential energy into kinetic energy of the steam, and then converted into mechanical energy in the form of turbine shaft rotation. Turbine shaft directly or with the aid reduction gear, which will be connected to the driven mechanism. Depending on the type of mechanism used, the steam turbine can be used in various fields, such as in industry, for power generation and for transportation. In the process of change of potential energy into mechanical energy, which is in the form of shaft rotation is done in various ways.
Basically steam turbine consists of two main parts, the stator and rotor which is a major component in the turbine, then added other components which include supporters such as bearings, couplings and other auxiliary systems so that the turbine can work better. A steam turbines harness the kinetic energy of the working fluid increases due to the addition of thermal energy.
Energy Policy in the Electricity Supply
In meeting the needs of national power, the construction of power plants in Indonesia is not merely done by PT PLN (State Electricity Company) - Limited, but has also been conducted by other parties, namely private, cooperative, and provincial enterprises (enterprises) . This is in accordance with Article 4, paragraph (2) of Law No. 30 Year 2009 on Electricity, that: "private business entities, cooperatives, and NGOs to participate in the electricity supply business".
Development of electricity supply capacity directed at realistic growth and preferred to resolve the electricity supply crisis occurred in some areas, increasing reserves and the fulfillment of reserve margin (System Java-Madura-Bali 30% and System Outer Java-Madura Bali 40%) with prioritize the use of local energy sources or renewable energy generation and reducing the development of fuel oil (BBM).
Fuel plant development, management excluded for local electricity supply crisis short-term (one to two years ahead) pending the completion of the construction of non-fuel plants that have been planned, by rental plants using fuel MFO.
If the non-fuel plants that have been planned are now operating, the generator fuel is in the non-operated.
Considering the high growth power, providing electricity access to all the community and encourage the use of renewable energy, the development acceleration program of 10,000 MW phase II varied composition of primary energy (not just coal) offered to be developed by PT PLN (Persero) and private by providing facilities as has been done in the development acceleration program of 10,000 MW phase I.
Development of small-scale coal-fired power plant can be considered as an alternative to replace power plants that use fossil fuels in small-scale systems to reduce the cost of operating the electrical system. In addition, the development of steam power plant (CPP) is a small-scale coal can also be used to partially replace the role of Diesel Power Plant (diesel) in the electrical system in Outer Java-Madura-Bali that dominance is still quite high.
Taking into account the difficulties in acquiring land to build large-scale power plant on the island of Java, and consider increasing the peak load from year to year, the development of coal-fired power plant with a capacity of 1,000 MW supercritical boiler technology to gain efficiency and better emission levels, can developed by PT PLN (Persero) and private.
In general, the national energy policy more reliant on energy derived from fossil fuels, especially fuel oil (BBM). Specifically on the provision of electricity from PLN's installed capacity, amounting to 72.85% of energy generated from fossil fuels comprising: 28.58% comes from gas-fired plants, 25.28% from oil, and 18.99% were of coal. While electricity generated by hydropower for 11.96%, and the heat generated by the earth of 1.51%. Fuel prices reaching between 60-70 U.S. dollars per barrel impact on the high cost of electricity supply nationwide. This is compounded by the ability of the state to bear the subsidy has declined, so the rates of Electric Power (TDL) always increase significantly. This situation is compounded by the behavior of entrepreneurs deadly power generators during peak hours. This problem coupled with the aging of plants PLN crisis affecting the electric power during peak loads.
Power outages in turn will impact on the declining productivity of the economy. The absence of continuous power will turn off the small and medium industries are on average do not have the resources to deal with black back out. National power-saving policies on the one hand will reduce electricity consumption, but on the other hand will reduce the quality of human life. Delays in medical operations, highway breakdown, limiting hours of TV and radio broadcast is concrete evidence that the community experienced. Is this an opportunity cost that must be paid to ensure adequate national power? Surely in the long term the costs will be even greater.
Power saving policies should be balanced with research and development on the provision of electronic tools that save electricity in the market. In the long term in line with the increase in economic growth, the need for national electrical energy also increased quite rapidly. PLN should improve the condition of the generator and increase the number of generators to ensure electricity supply nationwide. In addition, to avoid the world energy price fluctuations, it is necessary to diversify energy. This is to reduce risk and ensure certainty of the national electricity production. Interesting question to ask, is: How is energy diversification to be done? and What is the potential use of alternative energy sources for electricity generation?
ENERGY DIVERSIFICATION
Energy experts, energy split into 3 parts, namely: fossil energy (oil, coal, and natural gas), nuclear energy, and renewable energy. Nature of the energy that comes from non-renewable fossil is, so there is the possibility of energy sources will be depleted if used continuously. Though the process of the formation of this type of energy required a very long time. Besides, the energy derived from fossil fuels will lead to pollution of water, air, and soil incredible. Nuclear energy comes from radioactive nuclei fission process, which can lead to heat energy. While renewable energy is usually derived from plant materials. Goal of diversifying energy for electricity generation is expected to reduce dependence on petroleum, to ensure sufficient generation, is sustainable, and reduce environmental pollution.
Steps taken by PLN to switch from coal to oil and gas is a policy of "prudent" at this time. PLN in the short term will replace 12 fuel generator using LPG (Liquid Petroleum Gas).
Chemically, LPG is better when compared to LNG, LPG categorized as C3-C4 hydrocarbons (Propane and Butane), while the C1-C2 LNG (Methane). In addition, the potential of LPG in Indonesia is very large in the amount of 68.87 trillion cubic feet consisting of non-associated gas reserves of 60 trillion and associated gas reserves of 8.87 trillion cubic feet. The reserves are spread across Indonesia, with the largest reserves are in Natuna Island, East Kalimantan, and Nangro Aceh Darussalam (NAD). During the LPG is widely used as an export commodity, and underutilized energy source in the industry.
By using LPG, the PLN will enjoy savings of Rp. 1950.00 per liter when compared with HSD (High Solar Diesel). This savings is based on the calculation of the difference in price between LPG and HSD. LPG import prices of around U.S. $ 380 per ton, while the price of HSD at Rp. 4,800 per liter. While domestic LPG prices around U.S. $ 320 per ton and HSD at Rp 4,300. Additional costs to be borne by, among others, the provision of PLN shelter along with all the LPG infrastructure or bear the costs if the ship docked using the ship as a reservoir. Using LPG storage tankers as bringing convenience to the distribution, so that the delay for generating energy stocks can be reduced, but on the other hand will bear the cost of PLN ship docked around U.S. $ 10.000/hari.
In addition to gas, fossil fuels are available in abundance in Indonesia, namely coal. Potential coal reserves in Indonesia around 36.34 x 109 tons, which are mostly in Sumatra and Kalimantan. By using the R / P ratio (ratio between reserves and production), then the coal will run out about 500 years, while fuel oil and natural gas will run out 16 and 34 years. This fact indicates that coal is the energy source of the most abundant fossils in Indonesia. The share of coal as a primary energy source is currently only about 9%, from the amount used to fuel new power plants produce 18.99% of PLN's installed capacity. Currently still limited to the use of coal for household needs and as an export commodity. On the other hand the use of coal as an energy source will cause environmental pollution. Utilization of methane gas that is in coal seams is one of the policies that should be considered. This is because Indonesia has reserves of methane gas at 1.4 times the current amount. Existing coal does not need to be raised to the surface, but changed by using the technique of melting in the basement and then the gas is taken. The benefit will reduce the cost of mining and clean environment.
By diversifying energy and does not rely on fuel, the sustainability of electricity supply has a bright hope. Should remain well aware that coal and gas are non-renewable resources as well, so in the long term is necessary to use alternative energy and should be included in the national energy policy. Subsidies and funding research and development of alternative energy over the policy is an important factor for the success of national energy policy.
INTRODUCTION
LIST OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF FIGURES
CHAPTER I - INTRODUCTION
1.1. Background
1.1.1. Management of the electricity system in Indonesia
1.1.1.1. Electrical system in Java-Bali
1.1.1.2. Electricity system has been integrated in Sumatra
1.1.1.3. Island electricity system in another
1.1.2. Conditions Generation System
1.1.2.1. Plant development
1.1.3. Transmission System Conditions
1.1.4. Realization of the power sector growth
1.2. Purpose and Scope
1.3. Source of Data and Information
CHAPTER II - POPULATION GROWTH AND INDONESIA
2.1. Economic growth in Indonesia, Quarter IV-2012
2.1.1. Economic growth, in 2012
2.1.2. Economic Growth, Quarter IV-2012
2.1.3. Structure of GDP by economic activities, 2010-2012 Year
2.1.4. GDP by expenditure
2.1.5. GDP and Gross National Product (GNP) Per Capita
2.1.6. Indonesian Economic Spatial profile by province group, Quarter IV-2012
2.2. Indonesian Economic Growth First Quarter-2013 grew from 6.3 to 6.8 Percent
2.3. Development of the consumer price index / inflation
2.4. Indonesian economy grew Second Quarter 2013 5.81 Percent
2.4.1. GDP by Industrial Origin, Second Quarter 2013
2.4.2. GDP by expenditure, Second Quarter 2013
2.4.3. Indonesian Economic Spatial profile according to Provincial Group, Second Quarter 2013
2.5. Indonesia's population could reach more than 257 Million People, in 2013
CHAPTER III - THEORY OF STEAM TURBINE (STEAM TURBINE)
3.1. Know the steam turbine
3.1.1. Definition of steam turbine
3.1.2. Steam Turbine components
3.1.3. The workings of Steam Turbines
3.1.4. Classification of Steam Turbines
3.1.5. Function Steam Turbines
3.2. List of Power Plant in Indonesia
3.2.1. Hydroelectric Power Plant (HEPP)
3.2.2. Steam Power Plant (CPP)
3.2.3. Gas power plant (power plant)
3.2.4. Diesel Power Plant (diesel)
3.2.5. Nuclear Power Plant
3.3. Five alternative energy suitable for Indonesia
3.3.1. Wind Turbine Power (Windmill)
3.3.2. Geothermal power (Geothermal)
3.3.3. Power Wave (Wave)
3.3.4. Hydropower (Water)
3.3.5. Waste Energy (Biomass)
3.4. Plant Selection Criteria
3.4.1. Load Characteristics
3.4.2. Plant Reliability
3.4.3. Economic Aspects
3.4.4. Environmental and Geographical Aspects
3.4.5. Social and Political Aspects
3.5. Plant Types
3.5.1. Oil-fired power plants
3.5.2. Gas-Fired Power Plant
3.5.3. Power Plant Coal-Fired
3.5.4. Nuclear Power Plant
3.5.5. Renewable Energy Power Plant
3.5.6. Solar
3.5.7. Wind Power
3.5.8. Biomass
3.5.9. Geothermal power (Geothermal)
3.6. Know the Micro Turbine
3.6.1. Ten units of micro-turbines can supply electricity for the apartment measuring 44 520 meters
3.6.2. Livestock manure biogas micro turbine Rural
CHAPTER IV - MARKET CONDITIONS
4.1. PT Siemens Industrial Power, a key player Steam Turbine National
4.2. Indonesia is a strong market for the Power Industry
4.3. Chinese investors drizzle funds worth U.S. $ 20 million to build an engine plant steam turbine
4.4. SST-140 steam turbine with a capacity of 20 MW output in Indonesia
4.5. GE Oil & Gas & Steam Turbine launched Triveny
4.6. BPPT chief inaugurates National Industrial Steam Turbine Factory
4.7. Siemens SST-140, the latest Steam Turbine Sugar Factory
4.8. PT. Nusantara Turbine and Propulsion (NTP) first steam engine pioneer in Indonesia
4.9. PT. Krakatau Power (KDL) realized 40 percent on power plant
4.10. Power Development in Papua
4.11. Gas Power Plant Projects Rp 925 billion done WIKA
4.12. Siemens turbines used in power plant Timika
4.13. WIKA control more than 30% of the 10,000 MW Phase I
4.14. Meulaboh power plant operational by early March 2013
4.15. Siemens turbine electricity production
4.16. PLN to reduce dependence on imports Components
4.17. Aeroderivatif Gas Turbine Engines, illuminated remote areas
4.18. PLN East Java makes inroads by building PLTMH
4:19. U.S. investors woke Wind Power Plant in Yogyakarta
4.19.1. Utilization of wind energy in Indonesia
4.19.2. Wind potential map
4.19.3. Drives the water pump
4.19.4. Types of wind turbines
4.20. Korea keen to build Hydro Power in Indonesia
4.21. China developed Power Project in Indonesia
4.22. Minister inaugurates operation 7 Electricity Project in Sulawesi
4.23. PLN signed power plant contracts Timika 4 x 7 MW
4.24. Batam, Boost Power Capacity of 80 MW Gas Turbine use
4.25. Marine energy development in NTT
4.26. PLN 2x30 MW rental power plant in Bangka-Belitung (Babel)
4.27. French companies develop electricity-producing wind turbines as well as clean water
4.28. UPC Renewables Indonesia and Indonesia Limited signed a Memorandum of Understanding (MoU)
4.29. Offshore Wind Energy: Renewable Energy Market New
4.30. MHP Kalimaron, efforts to liberate the citizens
4.31. Substitute fuel in combined cycle gas Lorok Pond from 2013
4.32. The U.S. shift in the development of Chinese Wind Energy
4.33. Indonesian waters Electrical Energy savings potential of ocean currents
4.34. Power Plant ocean currents for coastal villages left behind
4.35. Backward villages in small islands
4.36. Agenda and the National Electrical constraints
4.37. Electricity as a Basic Infrastructure
4.38. Marine Current Energy Potential for small islands
4.39. Hydroelectric Power Peusangan ready to meet the needs of Gayo
4.40. Kamojang best quality geothermal steam in Indonesia
4.41. Micro Hydro Electric Waterboom illuminated in Klaten
4.42. Seeing the power grid in the United States
4.43. Aternatif Energy policy development in India
4.44. Micro Hydro Power (MHP)
4.45. In 2013, coal production in the country amounted to 20.30 per cent
4.46. Turkey began to look at Geothermal Indonesia
4.47. The World Bank and the New Zealand support Pertamina Geothermal Energy Geothermal Energy's expansion in the world's biggest
4.48. Three Solar Power Plant (PLTS) officially opened
4.49. Jeneponto Minister inaugurates power plant (2 x 125 MW)
4.50. List of Private Power and Capacity
4.51. List of Indonesian IPPs (including companies that do not supply their power to PLN)
CHAPTER V - THE ENERGY SOURCE IN INDONESIA
5.1. Coal
5.1.1. Producers and Coal Production
5.1.2. Map location of the deployment of resources and coal reserves
5.1.3. Coal Supply
5.1.4. Briquette Production
5.1.5. Coal prices
5.2. Natural Gas
5.2.1. Natural Gas Reserves
5.2.2. Natural Gas Production
5.2.3. Production and Utilization of Natural Gas
5.2.4. Gas Exports
5.2.5. LPG Production and Imports
5.2.6. LNG Production and Export
5.3. Electricity
5.3.1. National Electrification Ratio
5.3.2. Balance of the National Electricity
5.3.3. Electricity Generating Capacity
5.3.4. Electricity production per plant type
5.3.5. Electricity Sales by Sector
5.4. Oil
5.4.1. Oil Reserves
5.4.2. Petroleum Production
5.4.3. Oil prices
5.4.4. Oil Exports
5.4.5. Petroleum Imports by Country of Origin
5.4.6. Production of fuel oil (BBM)
5.4.6.1. Cumulative oil production
5.4.7. Non-fuel production
5.4.7.1. Cumulative production of non-fuel
5.4.8. Fuel imports
5.4.9. Fuel and non-fuel consumption by type of energy
5.4.10. Results of Treatment Oil (Refined Products)
5.5. Renewable Energy
5.5.1. Renewable Energy Developments
5.5.2. Geothermal Potential Map of Indonesia
5.5.3. Geothermal installed capacity by region
5.5.4. Geothermal Steam Production
5.5.5. Hydropower Potential
5.5.6. Hydropower Installed Capacity
5.5.7. Installed Capacity of MHP
5.5.8. Installed Capacity of Biomass PLT
5.5.9. Installed Capacity PLTS / SHS
5.5.10. Installed Capacity PLT Bayu / Wind
5.6. Enterprise License Holder
5.6.1. Petroleum Processing
5.6.2. Processing Processed
5.6.3. Natural Gas Processing
5.7. Annual Report of Oil and Condensate Production Indonesia
5.8. Total Production of LPG
5.9. Production and Utilization of Natural Gas
5.10. LPG production
5.11. LNG production
CHAPTER VI - PERFORMANCE PT. PLN (Persero)
6.1. Balance of Power (MW)
6.2. Energy Balance
6.3. Load factor, capacity factor, Factor Demand
6.4. The number of violations per type of customer
6.5. Connected power per customer group (MVA)
6.6. Energy sold per group of customers (GWh)
6.7. Revenue per customer group (Million USD)
6.8. Energy sold on average per type of customer (kWh)
6.9. Selling price of electricity on average per customer group (Rp / kWh)
6.10. Number of customers per type of voltage
6.11. Power is connected
6.12. Energy sold per type of voltage (GWh)
6.13. National Electrification Ratio
6.14. Balance of the National Electricity
6.15. Electricity Generating Capacity per type of plant
6.16. Electricity production per plant species
6.17. Electricity sales by sector
6.18. Revenue per type of voltage (Million USD)
6.19. Number of customers, the power is connected and the energy consumed per Group Rates
6.20. Electrification ratio and energy consumed per capita
6.21. Generating Unit Number
6.22. Installed capacity (MW)
6.23. Power capable
6.24. Energy produced (GWh)
6.25. Fuel consumption
6.26. Unit price of fuel
6.27. Energy produced per fuel type (GWh)
6.28. Captive Power (CP)
6.29. Long transmission lines (kms)
6.30. Length of medium voltage network and low voltage (kms)
6.31. Number and the installed power transformer substation
6.32. Amount of installed power transformer and distribution substations
6.33. Plant operating costs per type of
6.34. Plant operating cost per kWh average
6.35. Energy sold per customer group
6.36. Income of PLN
6.37. Installed capacity
6.38. Load factor, capacity factor and factor demand (%)
6.39. Connected power per customer group (MVA)
6.40. Energy sold on average per customer group (kWh)
CHAPTER VII - INDONESIA GAS SUPPLY REQUIREMENTS OVERVIEW
7.1. Gas problems (National, Regional, Global)
7.2. Basis for determining the balance of Gas Indonesia
7.3. Gas balance map Indonesia
7.4. Gas balance 11 region
7.5. Gas supplies by Region
CHAPTER VIII - THE EXPORT-IMPORT GOODS AND MATERIALS FOR STEAM TURBINE
8.1. Import
8.1.1. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by commodities (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.1.2. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by Month (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.1.3. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by port (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.1.4. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by Country (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.1.5. Imports of goods and supporters to manufacture Steam Turbines (Steam Turbine) by commodity (HS Code 8404.20.00.00 - 8437.80.10.00), 2013
8.1.6. Imports of goods and supporters to manufacture Steam Turbines (Steam Turbine) by month (HS Code 8404.20.00.00 - 8437.80.10.00), 2013
8.1.7. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by month (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.1.8. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by country (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.1.9. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) according to the port (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.1.10.Impor thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by month (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.2. Export
8.2.1. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by commodities (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.2.2. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by Country (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.2.3. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by port (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.2.3. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by Month (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.2.4. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by commodities (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.2.5. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by Country (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.2.6. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by port (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.2.7. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by Month (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
CHAPTER IX - LIST OF POWER PLANT PROJECT
CHAPTER X - ENERGY USE IN SOME SECTORS
10.1. Pulp and Paper
10.1.1. Reduce the opportunity cost
10.1.2. Stages of Technology Development
10.1.2.1. Technology for the energy industry sector
10.1.3. Energy use in the Pulp and Paper industry
10.2. Sugar
10.3. Steel
10.3.1. Steel industry energy consumption by 18% and Gas
10.4. Biomass IPP
10.5. Textiles
10.6. Carbon Black
10.7. City Solid Waste
10.8. Food
10.9. District heating
10.10. Distillation
10.11. Chemicals
10.12. Oil and Gas
10.13. Palm oil
10.14. IPP is installed on Ships
CHAPTER XI - INVESTMENT OPPORTUNITIES AND SUPPORTING
11.1. Oil and Gas (Oil and Gas)
11.1.1. Indonesian Oil and Gas Conditions
11.1.2. Oil and Gas Resource Potential
11.1.3. The location and status of each basin sediments Indonesia
11.1.4. Resource Potential of Coal Bed Methane (CBM)
11.1.5. Oil and Gas Reserves
11.1.6. Exploration Activity
11.1.7. Oil and gas production
11.1.8. Petroleum market conditions
11.1.9. Fuel supply system
11.1.10. Gas market conditions
11.1.11. Oil and Gas Infrastructure
11.1.12. Refinery infrastructure
11.1.13. Natural gas infrastructure
11.1.14. Oil and Gas Investment Opportunities
11.1.15. Oil and Gas Investment Opportunities supporting business
11.1.16. Procedures and Gas Investment
11.2. Electricity Sub-Sector Investment Opportunities
11.2.1. Overview of the National Electric Power Conditions
12.2.1.1. Availability of energy resources
12.2.1.2. Current condition of Electricity Infrastructure
12.2.1.3. Electrification Ratio
11.2.2. Electricity Investment Opportunities
11.2.2.1. Conditions of demand and supply of electricity
11.2.2.2. Electricity infrastructure development priorities ahead
12.2.2.3. Potential sub-projects in the electricity sector
12.2.2.5. Procedures and Procedures for Investment
12.2.2.6. Permit Granting Authority and the Electricity Business
12.2.2.7. Mechanisms permit application
12.2.2.8. Infrastructure and Investment needs recapitulation
11.3. Investment opportunities sub sector Mineral and Coal Mining
11.3.1. Legal Basis
11.3.2. Overview of Conditions Mineral and Coal
11.3.2.1. Potential Mineral Resources and Coal
11.3.2.2. Mineral Industry Conditions
11.3.2.3. Coal Industry Conditions
11.3.3. Coal Transport Conditions
11.3.3.1. Coal loading port
11.3.3.2. Trade
11.3.4. Investment Opportunities and Challenges in Mineral and Coal
11.3.4.1. Production and Sales Conditions Mineral and Coal
11.3.5. Priority Infrastructure Development Mineral and Coal forward
11.3.5.1. Mineral Processing and Refining
11.3.5.2. Processing & Refining Tin
11.3.5.3. Processing & Refining Bauxite
11.3.5.4. Priority Infrastructure Development Mineral and Coal forward
11.3.6. Investment Opportunities and Challenges in the sub-sector of Mineral and Coal
11.3.6.1. Sub-Sector Investment Opportunities in Mineral and Coal
11.3.6.2. Sub Sector Investment Challenges in Mineral and Coal
11.3.6.3. Procedures and Procedures for Investment
11.3.6.4. Application Requirements IUP / IUPK Exploration
11.3.7. Permit Granting Authority and Mineral and Coal Mining
11.4. Investment Opportunities subsectors New Renewable Energy and Energy Conservation
11.4.1. Legal Basis
11.4.2. Overview of Conditions New Renewable Energy and Energy Conservation
11.4.2.1. Potential New Energy
11.4.2.3. Renewable Energy Potential
11.4.3. Energy Conservation Potential
11.4.4. Industrial structure of Renewable Energy and Energy Efficiency Utilization
11.4.5. Clean Energy Initiative
11.4.6. Investment Opportunities and Challenges of New Renewable Energy and Energy Conservation
11.4.6.1. New Energy Investment Opportunities
11.4.6.2. Nuclear Energy Investment Opportunities
11.4.6.3. Hydrogen Investment Opportunities
11.4.7. Renewable Energy Investment Opportunities
11.4.7.1. Geothermal
11.4.7.2. Stream and waterfall
11.4.7.3. Bioenergy
11.4.7.4. Sunlight Energy
11.4.7.5. Wind Energy
11.4.8. Energy Conservation Investment Opportunities
11.4.9. Investment Challenges New Renewable Energy and Energy Conservation
11.4.9.1. New Energy Investment Challenges
11.4.9.2. Coal Investment Challenges Tergaskan
11.4.9.3. Nuclear Investment Challenges
11.4.9.4. Hydrogen Investment Challenges
11.4.10. Challenges of Renewable Energy Investments
11.4.10.1. Geothermal Investment Challenges
11.4.10.2. Stream and waterfall
11.4.10.3. Bioenergy
11.4.10.4. Sunlight
11.4.10.5. Wind
11.4.10.6. Investment Challenges Movement and Sea Temperature Difference Layer
11.4.10.7. Energy Conservation Investment Challenges
11.4.11. Program Development of New Renewable Energy and Energy Conservation
11.4.11.1. New Energy Development Program
11.4.11.2. Renewable Energy Development Program
11.4.11.3. Bioenergy
11.4.11.4. Energy Movement and Sea Temperature Difference layer (the ocean)
11.4.12. Energy Conservation Program
11.4.12.1. Industry Sector
11.4.12.2. Commercial Sector
11.4.12.3. Transport Sector
11.4.12.4. Household sector
11.5. Procedures and Procedures for Investment
11.5.1. Procedures and Procedures for Investment Geothermal Business License
11.5.2. Procedures and Procedures for Commercial Business Licenses Biofuel
11.5.3. Procedures and Procedures for Business Licenses Various Renewable Energy (Energy generates electricity)
11.5.4. Problems that are often questionable and settlement in investing
11.5.4.1. Sub Sector Oil and Gas (Oil and Gas)
11.5.4.2. Sub Sector Minerals and Coal
11.5.4.3. Electricity Sub-Sector
11.5.4.4. Sub Sector New Renewable Energy and Energy Conservation (EBTKE)
11.5.5. Enclosure sector Investment Issues Energy and Mineral Resources (ESDM)
11.5.5.1. Sub Sector Oil and Gas (Oil and Gas)
11.5.5.2. Electricity Sub-Sector
11.5.5.3. Sub Sector Minerals and Coal
11.5.5.4. Sub Sector New Renewable Energy and Energy Conservation (EBTKE)
CSR CHAPTER XII - THE ENVIRONMENT IN POWER PLANT
12.1. CSR Background
12.2. Purpose and Tujun CSR
12.3. Benefits of CSR
12.4. Portrait of CSR in Indonesia
12.5. The need for a systematic CSR and Environmental Affairs Integrated
12.6. CSR at the Energy Conservation and Natural Resources (NR)
12.7. CSR on Renewable Energy (Renewable Energy)
12.8. Stakeholder involvement (stakeholder engagement)
12.9. CSR implementation by the environmental field ADARO INDONESIA PT (Solar Power)
12.10. CSR implementation of Environment - Environmental Education by PT Indonesia Power (Conservation Field School)
CHAPTER XIII - INDONESIAN NATIONAL STANDARD (SNI)
CHAPTER XIV - LIST OF COMPANIES - OIL AND GAS SUPPORT SERVICES
CHAPTER XV - CONCLUSION AND RECOMMENDATIONS
DIRECTORY (POWER PLANT COMPANY IN INDONESIA).
Sample of Company Profile
BUKAKA TEKNIK UTAMA, PT
A d d
r e s s : Bukaka Industrial Complex
Jl.
Raya Bekasi Cibinong Km. 19,5
Cileungsi
Bogor 16820 – West Java
Phones
: +62 (021) 8232323
Fax.
: +62 (021) 8231150, 8231780
Site : http://www.bukaka.co.id/
Contact :
Phone1 : +62.21.823 4803
Phone2 : +62.21.823 1149
Facsimile : +62.21.823 1150, 823 1780
marketing@bukaka.com
Phone1 : +62.21.823 1146 (direct)
Phone2 : +62.21.823 2323 (hunting) Ext. 533, 509
Facsimile : +62.21.823 1762
bdv@bukaka.com
Telephone1 : +62.21.823 4811 (direct)
Telephone2 : +62.21.823 2323 (hunting) Ext 541,542
Facsimile : +62.21.823 4810
hrd@bukaka.com
Date
of Establishment : a. 25 October 1978 as PT
BUKAKA TEKNIK UTAMA
b.
25 June 1997 as PT BUKAKA TEKNIK UTAMA Tbk.
Date
of Operation
Commencement : 1
9 7 9
Total
Investment
: Initial
a.
Equity
Capital – Rp. 3,200 million
b.
Loan
Capital – Rp. 7,300 million
c.
Total
Investment– Rp. 10,500 million
Expansion Unit
a.
Equity
Capital – Rp. 22,600 million
b.
Loan
Capital – Rp. 83,200 million
c.
Total
Investment– Rp. 105,800 million
Capitalization
: a. Authorized Capital - Rp.
200,000,000,000
b.
Issued Capital - Rp. 70,306,000,000
c.
Paid Up Capital - Rp. 70,306,000,000
S t a
t u s
: Limited
Liability & Public Listed Company
C a t
e g o r y
: National Private and
Domestic Investment (PMDN)
Company
Condition
of Company :
G o o d
P e r m i t s : The
Capital Investment Coordinating Board
-
No. 174/I/PMDN/1982, Dated 2 October 1982
-
No. 31/VI/PMDN/1985, Dated 7 May 1985
-
No. 357/II/PMDN/1990, Dated 30 May1990
-
No. 405/III/PMDN/1990, Dated 30 June
1990
-
No. 358/III/PMDN/1991, Dated 7 May 1991
-
No. 29/III/PMDN/1992, Dated 16 January
1992
Line
of Business
: - Manufacturing &
Distribution of Special
Vehicles,
Construction Equipment,
Agricultural, Machinery, Steel Structure
-
General Contracting
-
Investment Holding
-
Power Generation
Power
Name : PLTGU Tambaklorok (100 MW)
Production
of Capacity :
Initial
-
Fire
Fighting Trucks – 100 units p.a.
-
Asphalt
Sprayers – 100 units p.a.
-
Asphal
Mixing Plants – 8 units p.a.
-
Stone
Crushers – 25 units p.a.
-
Steel
Tower Electric Power Distribution – 12,000 units p.a.
-
Wide
Flange Beams – 5,000 units p.a.
-
Seed
Processing Plant – 150 units p.a
-
Transplanters
– 150 units p.a.
-
Harvesteres
– 150 units p.a
-
Redressers
– 150 units p.a
-
Treshers
– 150 units p.a
-
Elevators
– 150 units p.a.
- Farm Browers – 150 units p.a
-
Dryers
– 150 units p.a
-
Milling
Plants – 150 units p.a
-
Rice
Millings – 150 units p.a
-
Parts
& Component for Oil and Gas Drilling - 15,000 units p.a
-
Containers and Trailers – 2,000 units p.a.
-
Fire
Extingulisher Pumps – 10 units p.a
-
Tail
Gate Speaders – 100 units p.a
-
Asphalt
Melting Kettle – 120 units p.a
-
Asphalt
Finishers – 50 units p.a
-
Asphalt
Distribution – 50 units p.a
-
Concrete
Mixers – 70 units p.a
-
Pumping
Units – 500 units p.a
-
Microwave
Powers – 500 units p.a
-
Parabolic
Antenna – 500 units p.a
Expansion Units
-
High
Voltage Electric Powers – 47,930 tons p.a
-
Bridge
Contructions – 50,000 units p.a
-
Machine
Equipment Mining & Gas – 12,000 units p.a
-
Container
& Trailers – 2,400 units p.a
-
Fire
Extingulisher Pumps – 120 units p.a
-
Tail
Gate Speaders – 240 units p.a
-
Asphalt
Melting Kettle – 60 units p.a
-
Asphalt
Finishers – 144 units p.a
-
Asphalt
Distribution – 60 units p.a
-
Concrete
Mixers – 84 units p.a
-
Pumping
Units – 699 units p.a
-
Telecommunication
Equipments – 1,200 units p.a
-
Ductile
Iron Casting – 1,200 units p.a
-
Tyrd
Roliers – 120 units p.a
-
Vibrating
Compactors – 120 units p.a
-
Hand
Operated Vibrating – 120 units p.a
-
Motor
Graders – 120 units p.a
-
Steam
Generators – 180 units p.a
-
Gear
Box Pumps – 1,200 units p.a
-
Machine
Tools – 480 units p.a
-
Passenger
Boarding Bridges – 70 units p.a
-
Mini
Tractors – 2,000 units p.a
-
Hand
Tractors – 2,000 units p.a
-
Gantry
Crane/Transtainers – 10 units p.a
-
Electric
Transmission – 20 units p.a
Total
Employees
: 2,480
workers
Number
of R&D Staff : 50-100 workers
Main
Shareholders / : a. PT BUKAKA INVESTINDO
Parent
company b. PT TASPEN (Persero)
c.
Yayasan Kesejahteraan Karyawan PT BUKAKA
TEKNIK UTAMA
d. PT Asuransi Kerugian JASA RAHARDJA (Persero)
e. Mr. Drs. Mohammad Jusuf Kalla
f. Mr. Ir. Fadel Muhammad
g. Mr. Drs. Suhaeli Kalla
h. PT DANAREKSA (Persero)
i. Mr. Ir. Achmad Kalla
j. Mr. Ir. Muhammad Azhary
k. Mr. Ir. Kusnan Nuryadi
l. Mr. Ir. Muhammad Imron Zubaidy
m. Mr. Ir. Erwin Kurniadi
n. The Publics
B a n
k e r
s
: a. PT
Bank MANDIRI Tbk.
b. The Bank of
Tokyo – Mitsubishi UFJ Ltd.
Main
Markets
: Domestic
Supervisory
Board : a.
Mr. Suhaeli Kalla (Pres. Commissioner)
b.
Mr. Solichin Jusuf (Commissioner)
c.
Mr. Muhamad Abduh (Commissioner)
d.
Mr. Sumarsono (Indep. Commissioner)
Board
of Management : a. Mr. Irsal Kamarudin
(President Director)
b.
Mr. Alimudin Sewang (Hydropower Director)
c. Mrs. Saptiastuti Hapsari (Operational
Director I)
d. Mrs. Sofiah Balfas (Operational Director
II)
e.
Mr. Pradana Ramadhian G.(Finance
Director)
Associated Companies : Member
of the BUKAKA Group
R E M A R K S :
Commencing in 1978, from a small scale
operation with only twelve employees and a single product line, this company
has grown into a multi-million dollar company with thousand of employees.
Pioneer in the line of its genuine businesses, PT Bukaka Teknik Utama̢۪s main
activities cover the engineering and manufacturing of infra-structure related
products and services.
The focus and strength of the company lie with its continuing and innovating experience in serving the rapid national development of the most important support sectors, namely energy transportation, and communication. The challenging enormous demand for the infra-structure, strives the company to keep its attention to the ongoing innovation competing world-wide.
This is a company with breakthroughs of utilizing the maximum use of its productive personnel and continuous efficiency improvement to the attainable level of innovation.
The company is opened to all opportunities that promote efficiency in such a spread-wise area of activities. Though delivery as the final stage of operation is executed in an efficient and economical manner, the company keeps its improving process, even it has to invite and or to cooperate with expertises.
This is a company which implements the objective function of the good corporate governance. Governing the internal audit implementation to meet the objectives of good cooperate governance is totally inseparable.
POWER GENERATION
Beginning of Construction & Diesel
Engine rent, then do the conversion of high speed diesel (HSD) fuel to the MFO
(MFO-nization) and the conversion of HSD fuel to dual fuel (HSD & LNG) and
reduce gas emission for Diesel Generating Unit, with most customers are PT PLN
(Persero), for approximately 16 years has worked on dozens of projects relating
to electricity, particularly Power Generation. Start of work on the project on
a small capacity power about 1 MW up to the greatest engineering work for the project
MFO-nization PLTGU Tambaklorok, PT Indonesia Power Semarang with a capacity up
to 100 MW.
Power Generation Division is currently engaged in Engineering, Procurement and Construction, Power Rental, IPP Development, Reduce Fuel Cost, Optimization, O&M and Supply part. Armed with the experience of existing as well as adequate human resources, as well as business development in the field of power generation, Power Generation Division forward strategies include:
-
Perform internal improvements (already achieved ISO 9001:2008)
-
Strengthen the marketing by adding personnel and reorganize
marketing strategy
-
Pioneering partnership with a company that has experience and a wider
business network so as to grow the business and capture opportunities
-
Conducting R & D for new technologies include: solar, mini hydro power
plants, coal gasification fuel utilization and processing of waste as a fuel
Along
with the campaign the use of environmentally friendly energy sources, Power
Generation division will also develop projects in the field of MHP (Micro Hydro
Power Plant) and SPP (Solar Power Plant).
------------------------------------------------------------------
ENGLISH VERSION
Our customers love! Peace.
May we all exist in the shadow of the Lord!
Background of Commercial Global Data Research (CDR)
We are an agency consultant, Survey, Research and Reporting in the areas of global research data, presenting a variety of real-time business information that includes the manufacturing industry sector, mining, banking, insurance, feasibility studies, and other research services.
We present as your consultant partner, to provide real-time information that you need in order to determine the direction of policy in developing your company. One study book products that we offer to you is "Book Study of Market Conditions and Prospects of Industrial Steam Turbines (Power Plant) in Indonesia, 2013-2014.
We offer these books to you for Rp. 7,000,000 (seven million rupiahs) for the Indonesian version, and U.S. $ 800 for the English version, in order to help the business person on the Power Industry both domestic and foreign, to help the investors, help the banks or creditors, and other parties related, by looking at the map of power among its competitors / your partner, both with the government, competition from abroad and within the country, studying the development of export and import, know the obstacles and opportunities for companies who are or who will wrestle in enterprise Plant electricity, the production capacity of knowing, knowing the market, knowing the Board of Directors and Commissioners, as well as the other information you need to know. (Company Profile attached example).
How big are your company's contribution in improving and creating alternative energy in meeting the needs of electrical energy along with the economic development in Indonesia today and that will come along at the pace of development in all sectors. The Partnership also has opened the widest width by PLN for the investors to invest in the Power Industry, especially in areas that have not been touched by electricity. Well ..., to have this book, you will come to know and to know that every opportunity and constraints in this business. Happy reading ...!
INTRODUCTION
Steam turbine is an early mover that converts potential energy into kinetic energy of the steam, and then converted into mechanical energy in the form of turbine shaft rotation. Turbine shaft directly or with the aid reduction gear, which will be connected to the driven mechanism. Depending on the type of mechanism used, the steam turbine can be used in various fields, such as in industry, for power generation and for transportation. In the process of change of potential energy into mechanical energy, which is in the form of shaft rotation is done in various ways.
Basically steam turbine consists of two main parts, the stator and rotor which is a major component in the turbine, then added other components which include supporters such as bearings, couplings and other auxiliary systems so that the turbine can work better. A steam turbines harness the kinetic energy of the working fluid increases due to the addition of thermal energy.
Energy Policy in the Electricity Supply
In meeting the needs of national power, the construction of power plants in Indonesia is not merely done by PT PLN (State Electricity Company) - Limited, but has also been conducted by other parties, namely private, cooperative, and provincial enterprises (enterprises) . This is in accordance with Article 4, paragraph (2) of Law No. 30 Year 2009 on Electricity, that: "private business entities, cooperatives, and NGOs to participate in the electricity supply business".
Development of electricity supply capacity directed at realistic growth and preferred to resolve the electricity supply crisis occurred in some areas, increasing reserves and the fulfillment of reserve margin (System Java-Madura-Bali 30% and System Outer Java-Madura Bali 40%) with prioritize the use of local energy sources or renewable energy generation and reducing the development of fuel oil (BBM).
Fuel plant development, management excluded for local electricity supply crisis short-term (one to two years ahead) pending the completion of the construction of non-fuel plants that have been planned, by rental plants using fuel MFO.
If the non-fuel plants that have been planned are now operating, the generator fuel is in the non-operated.
Considering the high growth power, providing electricity access to all the community and encourage the use of renewable energy, the development acceleration program of 10,000 MW phase II varied composition of primary energy (not just coal) offered to be developed by PT PLN (Persero) and private by providing facilities as has been done in the development acceleration program of 10,000 MW phase I.
Development of small-scale coal-fired power plant can be considered as an alternative to replace power plants that use fossil fuels in small-scale systems to reduce the cost of operating the electrical system. In addition, the development of steam power plant (CPP) is a small-scale coal can also be used to partially replace the role of Diesel Power Plant (diesel) in the electrical system in Outer Java-Madura-Bali that dominance is still quite high.
Taking into account the difficulties in acquiring land to build large-scale power plant on the island of Java, and consider increasing the peak load from year to year, the development of coal-fired power plant with a capacity of 1,000 MW supercritical boiler technology to gain efficiency and better emission levels, can developed by PT PLN (Persero) and private.
In general, the national energy policy more reliant on energy derived from fossil fuels, especially fuel oil (BBM). Specifically on the provision of electricity from PLN's installed capacity, amounting to 72.85% of energy generated from fossil fuels comprising: 28.58% comes from gas-fired plants, 25.28% from oil, and 18.99% were of coal. While electricity generated by hydropower for 11.96%, and the heat generated by the earth of 1.51%. Fuel prices reaching between 60-70 U.S. dollars per barrel impact on the high cost of electricity supply nationwide. This is compounded by the ability of the state to bear the subsidy has declined, so the rates of Electric Power (TDL) always increase significantly. This situation is compounded by the behavior of entrepreneurs deadly power generators during peak hours. This problem coupled with the aging of plants PLN crisis affecting the electric power during peak loads.
Power outages in turn will impact on the declining productivity of the economy. The absence of continuous power will turn off the small and medium industries are on average do not have the resources to deal with black back out. National power-saving policies on the one hand will reduce electricity consumption, but on the other hand will reduce the quality of human life. Delays in medical operations, highway breakdown, limiting hours of TV and radio broadcast is concrete evidence that the community experienced. Is this an opportunity cost that must be paid to ensure adequate national power? Surely in the long term the costs will be even greater.
Power saving policies should be balanced with research and development on the provision of electronic tools that save electricity in the market. In the long term in line with the increase in economic growth, the need for national electrical energy also increased quite rapidly. PLN should improve the condition of the generator and increase the number of generators to ensure electricity supply nationwide. In addition, to avoid the world energy price fluctuations, it is necessary to diversify energy. This is to reduce risk and ensure certainty of the national electricity production. Interesting question to ask, is: How is energy diversification to be done? and What is the potential use of alternative energy sources for electricity generation?
ENERGY DIVERSIFICATION
Energy experts, energy split into 3 parts, namely: fossil energy (oil, coal, and natural gas), nuclear energy, and renewable energy. Nature of the energy that comes from non-renewable fossil is, so there is the possibility of energy sources will be depleted if used continuously. Though the process of the formation of this type of energy required a very long time. Besides, the energy derived from fossil fuels will lead to pollution of water, air, and soil incredible. Nuclear energy comes from radioactive nuclei fission process, which can lead to heat energy. While renewable energy is usually derived from plant materials. Goal of diversifying energy for electricity generation is expected to reduce dependence on petroleum, to ensure sufficient generation, is sustainable, and reduce environmental pollution.
Steps taken by PLN to switch from coal to oil and gas is a policy of "prudent" at this time. PLN in the short term will replace 12 fuel generator using LPG (Liquid Petroleum Gas).
Chemically, LPG is better when compared to LNG, LPG categorized as C3-C4 hydrocarbons (Propane and Butane), while the C1-C2 LNG (Methane). In addition, the potential of LPG in Indonesia is very large in the amount of 68.87 trillion cubic feet consisting of non-associated gas reserves of 60 trillion and associated gas reserves of 8.87 trillion cubic feet. The reserves are spread across Indonesia, with the largest reserves are in Natuna Island, East Kalimantan, and Nangro Aceh Darussalam (NAD). During the LPG is widely used as an export commodity, and underutilized energy source in the industry.
By using LPG, the PLN will enjoy savings of Rp. 1950.00 per liter when compared with HSD (High Solar Diesel). This savings is based on the calculation of the difference in price between LPG and HSD. LPG import prices of around U.S. $ 380 per ton, while the price of HSD at Rp. 4,800 per liter. While domestic LPG prices around U.S. $ 320 per ton and HSD at Rp 4,300. Additional costs to be borne by, among others, the provision of PLN shelter along with all the LPG infrastructure or bear the costs if the ship docked using the ship as a reservoir. Using LPG storage tankers as bringing convenience to the distribution, so that the delay for generating energy stocks can be reduced, but on the other hand will bear the cost of PLN ship docked around U.S. $ 10.000/hari.
In addition to gas, fossil fuels are available in abundance in Indonesia, namely coal. Potential coal reserves in Indonesia around 36.34 x 109 tons, which are mostly in Sumatra and Kalimantan. By using the R / P ratio (ratio between reserves and production), then the coal will run out about 500 years, while fuel oil and natural gas will run out 16 and 34 years. This fact indicates that coal is the energy source of the most abundant fossils in Indonesia. The share of coal as a primary energy source is currently only about 9%, from the amount used to fuel new power plants produce 18.99% of PLN's installed capacity. Currently still limited to the use of coal for household needs and as an export commodity. On the other hand the use of coal as an energy source will cause environmental pollution. Utilization of methane gas that is in coal seams is one of the policies that should be considered. This is because Indonesia has reserves of methane gas at 1.4 times the current amount. Existing coal does not need to be raised to the surface, but changed by using the technique of melting in the basement and then the gas is taken. The benefit will reduce the cost of mining and clean environment.
By diversifying energy and does not rely on fuel, the sustainability of electricity supply has a bright hope. Should remain well aware that coal and gas are non-renewable resources as well, so in the long term is necessary to use alternative energy and should be included in the national energy policy. Subsidies and funding research and development of alternative energy over the policy is an important factor for the success of national energy policy.
TABLE OF CONTENTS
INTRODUCTION
LIST OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF FIGURES
CHAPTER I - INTRODUCTION
1.1. Background
1.1.1. Management of the electricity system in Indonesia
1.1.1.1. Electrical system in Java-Bali
1.1.1.2. Electricity system has been integrated in Sumatra
1.1.1.3. Island electricity system in another
1.1.2. Conditions Generation System
1.1.2.1. Plant development
1.1.3. Transmission System Conditions
1.1.4. Realization of the power sector growth
1.2. Purpose and Scope
1.3. Source of Data and Information
CHAPTER II - POPULATION GROWTH AND INDONESIA
2.1. Economic growth in Indonesia, Quarter IV-2012
2.1.1. Economic growth, in 2012
2.1.2. Economic Growth, Quarter IV-2012
2.1.3. Structure of GDP by economic activities, 2010-2012 Year
2.1.4. GDP by expenditure
2.1.5. GDP and Gross National Product (GNP) Per Capita
2.1.6. Indonesian Economic Spatial profile by province group, Quarter IV-2012
2.2. Indonesian Economic Growth First Quarter-2013 grew from 6.3 to 6.8 Percent
2.3. Development of the consumer price index / inflation
2.4. Indonesian economy grew Second Quarter 2013 5.81 Percent
2.4.1. GDP by Industrial Origin, Second Quarter 2013
2.4.2. GDP by expenditure, Second Quarter 2013
2.4.3. Indonesian Economic Spatial profile according to Provincial Group, Second Quarter 2013
2.5. Indonesia's population could reach more than 257 Million People, in 2013
CHAPTER III - THEORY OF STEAM TURBINE (STEAM TURBINE)
3.1. Know the steam turbine
3.1.1. Definition of steam turbine
3.1.2. Steam Turbine components
3.1.3. The workings of Steam Turbines
3.1.4. Classification of Steam Turbines
3.1.5. Function Steam Turbines
3.2. List of Power Plant in Indonesia
3.2.1. Hydroelectric Power Plant (HEPP)
3.2.2. Steam Power Plant (CPP)
3.2.3. Gas power plant (power plant)
3.2.4. Diesel Power Plant (diesel)
3.2.5. Nuclear Power Plant
3.3. Five alternative energy suitable for Indonesia
3.3.1. Wind Turbine Power (Windmill)
3.3.2. Geothermal power (Geothermal)
3.3.3. Power Wave (Wave)
3.3.4. Hydropower (Water)
3.3.5. Waste Energy (Biomass)
3.4. Plant Selection Criteria
3.4.1. Load Characteristics
3.4.2. Plant Reliability
3.4.3. Economic Aspects
3.4.4. Environmental and Geographical Aspects
3.4.5. Social and Political Aspects
3.5. Plant Types
3.5.1. Oil-fired power plants
3.5.2. Gas-Fired Power Plant
3.5.3. Power Plant Coal-Fired
3.5.4. Nuclear Power Plant
3.5.5. Renewable Energy Power Plant
3.5.6. Solar
3.5.7. Wind Power
3.5.8. Biomass
3.5.9. Geothermal power (Geothermal)
3.6. Know the Micro Turbine
3.6.1. Ten units of micro-turbines can supply electricity for the apartment measuring 44 520 meters
3.6.2. Livestock manure biogas micro turbine Rural
CHAPTER IV - MARKET CONDITIONS
4.1. PT Siemens Industrial Power, a key player Steam Turbine National
4.2. Indonesia is a strong market for the Power Industry
4.3. Chinese investors drizzle funds worth U.S. $ 20 million to build an engine plant steam turbine
4.4. SST-140 steam turbine with a capacity of 20 MW output in Indonesia
4.5. GE Oil & Gas & Steam Turbine launched Triveny
4.6. BPPT chief inaugurates National Industrial Steam Turbine Factory
4.7. Siemens SST-140, the latest Steam Turbine Sugar Factory
4.8. PT. Nusantara Turbine and Propulsion (NTP) first steam engine pioneer in Indonesia
4.9. PT. Krakatau Power (KDL) realized 40 percent on power plant
4.10. Power Development in Papua
4.11. Gas Power Plant Projects Rp 925 billion done WIKA
4.12. Siemens turbines used in power plant Timika
4.13. WIKA control more than 30% of the 10,000 MW Phase I
4.14. Meulaboh power plant operational by early March 2013
4.15. Siemens turbine electricity production
4.16. PLN to reduce dependence on imports Components
4.17. Aeroderivatif Gas Turbine Engines, illuminated remote areas
4.18. PLN East Java makes inroads by building PLTMH
4:19. U.S. investors woke Wind Power Plant in Yogyakarta
4.19.1. Utilization of wind energy in Indonesia
4.19.2. Wind potential map
4.19.3. Drives the water pump
4.19.4. Types of wind turbines
4.20. Korea keen to build Hydro Power in Indonesia
4.21. China developed Power Project in Indonesia
4.22. Minister inaugurates operation 7 Electricity Project in Sulawesi
4.23. PLN signed power plant contracts Timika 4 x 7 MW
4.24. Batam, Boost Power Capacity of 80 MW Gas Turbine use
4.25. Marine energy development in NTT
4.26. PLN 2x30 MW rental power plant in Bangka-Belitung (Babel)
4.27. French companies develop electricity-producing wind turbines as well as clean water
4.28. UPC Renewables Indonesia and Indonesia Limited signed a Memorandum of Understanding (MoU)
4.29. Offshore Wind Energy: Renewable Energy Market New
4.30. MHP Kalimaron, efforts to liberate the citizens
4.31. Substitute fuel in combined cycle gas Lorok Pond from 2013
4.32. The U.S. shift in the development of Chinese Wind Energy
4.33. Indonesian waters Electrical Energy savings potential of ocean currents
4.34. Power Plant ocean currents for coastal villages left behind
4.35. Backward villages in small islands
4.36. Agenda and the National Electrical constraints
4.37. Electricity as a Basic Infrastructure
4.38. Marine Current Energy Potential for small islands
4.39. Hydroelectric Power Peusangan ready to meet the needs of Gayo
4.40. Kamojang best quality geothermal steam in Indonesia
4.41. Micro Hydro Electric Waterboom illuminated in Klaten
4.42. Seeing the power grid in the United States
4.43. Aternatif Energy policy development in India
4.44. Micro Hydro Power (MHP)
4.45. In 2013, coal production in the country amounted to 20.30 per cent
4.46. Turkey began to look at Geothermal Indonesia
4.47. The World Bank and the New Zealand support Pertamina Geothermal Energy Geothermal Energy's expansion in the world's biggest
4.48. Three Solar Power Plant (PLTS) officially opened
4.49. Jeneponto Minister inaugurates power plant (2 x 125 MW)
4.50. List of Private Power and Capacity
4.51. List of Indonesian IPPs (including companies that do not supply their power to PLN)
CHAPTER V - THE ENERGY SOURCE IN INDONESIA
5.1. Coal
5.1.1. Producers and Coal Production
5.1.2. Map location of the deployment of resources and coal reserves
5.1.3. Coal Supply
5.1.4. Briquette Production
5.1.5. Coal prices
5.2. Natural Gas
5.2.1. Natural Gas Reserves
5.2.2. Natural Gas Production
5.2.3. Production and Utilization of Natural Gas
5.2.4. Gas Exports
5.2.5. LPG Production and Imports
5.2.6. LNG Production and Export
5.3. Electricity
5.3.1. National Electrification Ratio
5.3.2. Balance of the National Electricity
5.3.3. Electricity Generating Capacity
5.3.4. Electricity production per plant type
5.3.5. Electricity Sales by Sector
5.4. Oil
5.4.1. Oil Reserves
5.4.2. Petroleum Production
5.4.3. Oil prices
5.4.4. Oil Exports
5.4.5. Petroleum Imports by Country of Origin
5.4.6. Production of fuel oil (BBM)
5.4.6.1. Cumulative oil production
5.4.7. Non-fuel production
5.4.7.1. Cumulative production of non-fuel
5.4.8. Fuel imports
5.4.9. Fuel and non-fuel consumption by type of energy
5.4.10. Results of Treatment Oil (Refined Products)
5.5. Renewable Energy
5.5.1. Renewable Energy Developments
5.5.2. Geothermal Potential Map of Indonesia
5.5.3. Geothermal installed capacity by region
5.5.4. Geothermal Steam Production
5.5.5. Hydropower Potential
5.5.6. Hydropower Installed Capacity
5.5.7. Installed Capacity of MHP
5.5.8. Installed Capacity of Biomass PLT
5.5.9. Installed Capacity PLTS / SHS
5.5.10. Installed Capacity PLT Bayu / Wind
5.6. Enterprise License Holder
5.6.1. Petroleum Processing
5.6.2. Processing Processed
5.6.3. Natural Gas Processing
5.7. Annual Report of Oil and Condensate Production Indonesia
5.8. Total Production of LPG
5.9. Production and Utilization of Natural Gas
5.10. LPG production
5.11. LNG production
CHAPTER VI - PERFORMANCE PT. PLN (Persero)
6.1. Balance of Power (MW)
6.2. Energy Balance
6.3. Load factor, capacity factor, Factor Demand
6.4. The number of violations per type of customer
6.5. Connected power per customer group (MVA)
6.6. Energy sold per group of customers (GWh)
6.7. Revenue per customer group (Million USD)
6.8. Energy sold on average per type of customer (kWh)
6.9. Selling price of electricity on average per customer group (Rp / kWh)
6.10. Number of customers per type of voltage
6.11. Power is connected
6.12. Energy sold per type of voltage (GWh)
6.13. National Electrification Ratio
6.14. Balance of the National Electricity
6.15. Electricity Generating Capacity per type of plant
6.16. Electricity production per plant species
6.17. Electricity sales by sector
6.18. Revenue per type of voltage (Million USD)
6.19. Number of customers, the power is connected and the energy consumed per Group Rates
6.20. Electrification ratio and energy consumed per capita
6.21. Generating Unit Number
6.22. Installed capacity (MW)
6.23. Power capable
6.24. Energy produced (GWh)
6.25. Fuel consumption
6.26. Unit price of fuel
6.27. Energy produced per fuel type (GWh)
6.28. Captive Power (CP)
6.29. Long transmission lines (kms)
6.30. Length of medium voltage network and low voltage (kms)
6.31. Number and the installed power transformer substation
6.32. Amount of installed power transformer and distribution substations
6.33. Plant operating costs per type of
6.34. Plant operating cost per kWh average
6.35. Energy sold per customer group
6.36. Income of PLN
6.37. Installed capacity
6.38. Load factor, capacity factor and factor demand (%)
6.39. Connected power per customer group (MVA)
6.40. Energy sold on average per customer group (kWh)
CHAPTER VII - INDONESIA GAS SUPPLY REQUIREMENTS OVERVIEW
7.1. Gas problems (National, Regional, Global)
7.2. Basis for determining the balance of Gas Indonesia
7.3. Gas balance map Indonesia
7.4. Gas balance 11 region
7.5. Gas supplies by Region
CHAPTER VIII - THE EXPORT-IMPORT GOODS AND MATERIALS FOR STEAM TURBINE
8.1. Import
8.1.1. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by commodities (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.1.2. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by Month (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.1.3. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by port (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.1.4. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by Country (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.1.5. Imports of goods and supporters to manufacture Steam Turbines (Steam Turbine) by commodity (HS Code 8404.20.00.00 - 8437.80.10.00), 2013
8.1.6. Imports of goods and supporters to manufacture Steam Turbines (Steam Turbine) by month (HS Code 8404.20.00.00 - 8437.80.10.00), 2013
8.1.7. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by month (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.1.8. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by country (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.1.9. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) according to the port (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.1.10.Impor thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by month (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.2. Export
8.2.1. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by commodities (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.2.2. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by Country (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.2.3. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by port (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.2.3. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by Month (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
8.2.4. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by commodities (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.2.5. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by Country (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.2.6. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by port (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
8.2.7. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by Month (HS Code 9025.19.19.00 - 9026.10.30.00), 2013
CHAPTER IX - LIST OF POWER PLANT PROJECT
CHAPTER X - ENERGY USE IN SOME SECTORS
10.1. Pulp and Paper
10.1.1. Reduce the opportunity cost
10.1.2. Stages of Technology Development
10.1.2.1. Technology for the energy industry sector
10.1.3. Energy use in the Pulp and Paper industry
10.2. Sugar
10.3. Steel
10.3.1. Steel industry energy consumption by 18% and Gas
10.4. Biomass IPP
10.5. Textiles
10.6. Carbon Black
10.7. City Solid Waste
10.8. Food
10.9. District heating
10.10. Distillation
10.11. Chemicals
10.12. Oil and Gas
10.13. Palm oil
10.14. IPP is installed on Ships
CHAPTER XI - INVESTMENT OPPORTUNITIES AND SUPPORTING
11.1. Oil and Gas (Oil and Gas)
11.1.1. Indonesian Oil and Gas Conditions
11.1.2. Oil and Gas Resource Potential
11.1.3. The location and status of each basin sediments Indonesia
11.1.4. Resource Potential of Coal Bed Methane (CBM)
11.1.5. Oil and Gas Reserves
11.1.6. Exploration Activity
11.1.7. Oil and gas production
11.1.8. Petroleum market conditions
11.1.9. Fuel supply system
11.1.10. Gas market conditions
11.1.11. Oil and Gas Infrastructure
11.1.12. Refinery infrastructure
11.1.13. Natural gas infrastructure
11.1.14. Oil and Gas Investment Opportunities
11.1.15. Oil and Gas Investment Opportunities supporting business
11.1.16. Procedures and Gas Investment
11.2. Electricity Sub-Sector Investment Opportunities
11.2.1. Overview of the National Electric Power Conditions
12.2.1.1. Availability of energy resources
12.2.1.2. Current condition of Electricity Infrastructure
12.2.1.3. Electrification Ratio
11.2.2. Electricity Investment Opportunities
11.2.2.1. Conditions of demand and supply of electricity
11.2.2.2. Electricity infrastructure development priorities ahead
12.2.2.3. Potential sub-projects in the electricity sector
12.2.2.5. Procedures and Procedures for Investment
12.2.2.6. Permit Granting Authority and the Electricity Business
12.2.2.7. Mechanisms permit application
12.2.2.8. Infrastructure and Investment needs recapitulation
11.3. Investment opportunities sub sector Mineral and Coal Mining
11.3.1. Legal Basis
11.3.2. Overview of Conditions Mineral and Coal
11.3.2.1. Potential Mineral Resources and Coal
11.3.2.2. Mineral Industry Conditions
11.3.2.3. Coal Industry Conditions
11.3.3. Coal Transport Conditions
11.3.3.1. Coal loading port
11.3.3.2. Trade
11.3.4. Investment Opportunities and Challenges in Mineral and Coal
11.3.4.1. Production and Sales Conditions Mineral and Coal
11.3.5. Priority Infrastructure Development Mineral and Coal forward
11.3.5.1. Mineral Processing and Refining
11.3.5.2. Processing & Refining Tin
11.3.5.3. Processing & Refining Bauxite
11.3.5.4. Priority Infrastructure Development Mineral and Coal forward
11.3.6. Investment Opportunities and Challenges in the sub-sector of Mineral and Coal
11.3.6.1. Sub-Sector Investment Opportunities in Mineral and Coal
11.3.6.2. Sub Sector Investment Challenges in Mineral and Coal
11.3.6.3. Procedures and Procedures for Investment
11.3.6.4. Application Requirements IUP / IUPK Exploration
11.3.7. Permit Granting Authority and Mineral and Coal Mining
11.4. Investment Opportunities subsectors New Renewable Energy and Energy Conservation
11.4.1. Legal Basis
11.4.2. Overview of Conditions New Renewable Energy and Energy Conservation
11.4.2.1. Potential New Energy
11.4.2.3. Renewable Energy Potential
11.4.3. Energy Conservation Potential
11.4.4. Industrial structure of Renewable Energy and Energy Efficiency Utilization
11.4.5. Clean Energy Initiative
11.4.6. Investment Opportunities and Challenges of New Renewable Energy and Energy Conservation
11.4.6.1. New Energy Investment Opportunities
11.4.6.2. Nuclear Energy Investment Opportunities
11.4.6.3. Hydrogen Investment Opportunities
11.4.7. Renewable Energy Investment Opportunities
11.4.7.1. Geothermal
11.4.7.2. Stream and waterfall
11.4.7.3. Bioenergy
11.4.7.4. Sunlight Energy
11.4.7.5. Wind Energy
11.4.8. Energy Conservation Investment Opportunities
11.4.9. Investment Challenges New Renewable Energy and Energy Conservation
11.4.9.1. New Energy Investment Challenges
11.4.9.2. Coal Investment Challenges Tergaskan
11.4.9.3. Nuclear Investment Challenges
11.4.9.4. Hydrogen Investment Challenges
11.4.10. Challenges of Renewable Energy Investments
11.4.10.1. Geothermal Investment Challenges
11.4.10.2. Stream and waterfall
11.4.10.3. Bioenergy
11.4.10.4. Sunlight
11.4.10.5. Wind
11.4.10.6. Investment Challenges Movement and Sea Temperature Difference Layer
11.4.10.7. Energy Conservation Investment Challenges
11.4.11. Program Development of New Renewable Energy and Energy Conservation
11.4.11.1. New Energy Development Program
11.4.11.2. Renewable Energy Development Program
11.4.11.3. Bioenergy
11.4.11.4. Energy Movement and Sea Temperature Difference layer (the ocean)
11.4.12. Energy Conservation Program
11.4.12.1. Industry Sector
11.4.12.2. Commercial Sector
11.4.12.3. Transport Sector
11.4.12.4. Household sector
11.5. Procedures and Procedures for Investment
11.5.1. Procedures and Procedures for Investment Geothermal Business License
11.5.2. Procedures and Procedures for Commercial Business Licenses Biofuel
11.5.3. Procedures and Procedures for Business Licenses Various Renewable Energy (Energy generates electricity)
11.5.4. Problems that are often questionable and settlement in investing
11.5.4.1. Sub Sector Oil and Gas (Oil and Gas)
11.5.4.2. Sub Sector Minerals and Coal
11.5.4.3. Electricity Sub-Sector
11.5.4.4. Sub Sector New Renewable Energy and Energy Conservation (EBTKE)
11.5.5. Enclosure sector Investment Issues Energy and Mineral Resources (ESDM)
11.5.5.1. Sub Sector Oil and Gas (Oil and Gas)
11.5.5.2. Electricity Sub-Sector
11.5.5.3. Sub Sector Minerals and Coal
11.5.5.4. Sub Sector New Renewable Energy and Energy Conservation (EBTKE)
CSR CHAPTER XII - THE ENVIRONMENT IN POWER PLANT
12.1. CSR Background
12.2. Purpose and Tujun CSR
12.3. Benefits of CSR
12.4. Portrait of CSR in Indonesia
12.5. The need for a systematic CSR and Environmental Affairs Integrated
12.6. CSR at the Energy Conservation and Natural Resources (NR)
12.7. CSR on Renewable Energy (Renewable Energy)
12.8. Stakeholder involvement (stakeholder engagement)
12.9. CSR implementation by the environmental field ADARO INDONESIA PT (Solar Power)
12.10. CSR implementation of Environment - Environmental Education by PT Indonesia Power (Conservation Field School)
CHAPTER XIII - INDONESIAN NATIONAL STANDARD (SNI)
CHAPTER XIV - LIST OF COMPANIES - OIL AND GAS SUPPORT SERVICES
14.1. Line of Business
Construction Services
14.2. Non Line of
Business Construction Services
14.3. Supporting
Industry Business Sector
14.4. List of
Companies - Cooperation Contract
14.4.1. List of Oil
Company (Hulu)
14.4.2. List of Oil
Company (Downstream)
14.4.3. Pertamina EP
14.4.4. Pertamina
Business Unit
14.5. Downstream
Sector Enterprises
14.5.1. List of
Business Permit Processing Crude Oil, Natural Gas, and Processed
14.5.2. List of
License Holders Transportation Fuel
14.5.3. List of
License Holders Fuel Storage
14.5.4. List of
License Holders LPG Storage
14.5.5. List of
License Holders Commercial Biofuel (Biofuel)
14.5.6. List of
Company Owner NPT
14.6. Field
Engineering Services
14.6.1. List of
Drilling
14.6.2. List of
Technical Inspection Services
14.6.3. List of
Measuring Gas Agency
14.6.4. Environmental
Consultants and Laboratories
14.6.5. Seismic
Companies List
14.6.6. List Fabricators Meter System Engineer
Oil and GasCHAPTER XV - CONCLUSION AND RECOMMENDATIONS
DIRECTORY (POWER PLANT COMPANY IN INDONESIA).
0 comments:
Post a Comment